TY - JOUR
AU - H. O. Maslyuk
PY - 2017/01/25
Y2 - 2022/12/02
TI - Continuity of the solutions of one-dimensional boundary-value problems in Hölder
spaces with respect to the parameter
JF - Ukrains’kyi Matematychnyi Zhurnal
JA - Ukr. Mat. Zhurn.
VL - 69
IS - 1
SE - Research articles
DO -
UR - https://umj.imath.kiev.ua/index.php/umj/article/view/1677
AB - We introduce the most general class of linear boundary-value problems for systems of ordinary differential equations of order $r \geq 2$ whose solutions belong to the complex Hölder space $C^{n+r,\alpha} ([a, b])$, where $n \in Z_{+},\;0 < \alpha \leq 1$ и $[a, b] \subset R$, and$[a, b] \subset R$. We establish sufficient conditions under which the solutions of these problems continuously depend on theparameter in the H¨older space $C^{n+r,\alpha} ([a, b])$.
ER -