TY - JOUR
AU - Armіn Shams
PY - 2007/12/25
Y2 - 2024/04/18
TI - Re-extending Chebyshev’s theorem about Bertrand’s conjecture
JF - Ukrains’kyi Matematychnyi Zhurnal
JA - Ukr. Mat. Zhurn.
VL - 59
IS - 12
SE - Short communications
DO -
UR - https://umj.imath.kiev.ua/index.php/umj/article/view/3424
AB - In this paper, Chebyshev’s theorem (1850) about Bertrand’s conjecture is re-extended using a theorem about Sierpinski’s conjecture (1958). The theorem had been extended before several times, but this extension is a major extension far beyond the previous ones. At the beginning of the proof, maximal gaps table is used to verify initial states. The extended theorem contains a constant r, which can be reduced if more initial states can be checked. Therefore, the theorem can be even more extended when maximal gaps table is extended. The main extension idea is not based on r, though.
ER -