TY - JOUR
AU - M. R. Dixon
AU - M. J. Evans
AU - L. A. Kurdachenko
PY - 2005/11/25
Y2 - 2024/05/18
TI - Linear groups with minimality condition for some infinite-dimensional subgroups
JF - Ukrains’kyi Matematychnyi Zhurnal
JA - Ukr. Mat. Zhurn.
VL - 57
IS - 11
SE - Research articles
DO -
UR - https://umj.imath.kiev.ua/index.php/umj/article/view/3702
AB - Let $F$ be a field, let $A$ be a vector space over $F$, and let $GL(F, A)$ be the group of all automorphisms of the space $A$. If $H$ is a subgroup of $GL(F, A)$, then we set aug $\dim_F (H) = \dim_F (A(ωFH))$, where $ωFH$ is the augmentation ideal of the group ring $FH$. The number ${\rm{aug} \dim}_F (H)$ is called the augmentation dimension of the subgroup $H$. In the present paper, we study locally solvable linear groups with minimality condition for subgroups of infinite augmentation dimension.
ER -