https://umj.imath.kiev.ua/index.php/umj/issue/feedUkrains’kyi Matematychnyi Zhurnal2025-01-03T13:25:42+02:00Ukrainian Mathematical Journalumzh@imath.kiev.uaOpen Journal Systems<h1>Ukrains’kyi Matematychnyi Zhurnal<br>(Ukrainian Mathematical Journal) <br><br></h1> <p>Editor-in-Chief: <a href="https://imath.kiev.ua/~tim/">A. N. Timokha</a><br><br>ISSN: <a href="http://dispatch.opac.d-nb.de/DB=1.1/LNG=EN/CMD?ACT=SRCHA&IKT=8&TRM=0041-6053" target="_blank" rel="nofollow noopener">0041-6053, 1027-3190</a></p> <p>Ukrains'kyi Matematychnyi Zhurnal (UMZh) was founded in May 1949. Journal is issued by <a href="http://imath.kiev.ua/?lang=en" target="_blank" rel="noopener">Institute of Mathematics NAS of Ukraine</a>. English version is reprinted in the Springer publishing house and called <a href="http://link.springer.com/journal/11253" target="_blank" rel="noopener">Ukrainian Mathematical Journal</a>.</p> <p>Ukrains'kyi Matematychnyi Zhurnal focuses on research papers in the principal fields of pure and applied mathematics. The journal is published monthly, each annual volume consists of 12 issues. Articles in Ukrainian and English are accepted for review. </p> <p>UMZh indexed in: <a href="http://www.ams.org/mathscinet/search/journaldoc.html?jc=UKRMJ" target="_blank" rel="nofollow noopener">MathSciNet</a>, <a href="https://zbmath.org/journals/?q=se:00000215" target="_blank" rel="nofollow noopener">zbMATH</a>, <a href="http://www.scopus.com/source/sourceInfo.uri?sourceId=130147&origin=resultslist" target="_blank" rel="nofollow noopener">Scopus</a>, <a href="http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&Full=Ukrainian%20Mathematical%20Journal" target="_blank" rel="nofollow noopener">Web of Science</a>, <a href="https://scholar.google.com.ua/citations?hl=uk&user=fZruD2sAAAAJ&view_op=list_works" target="_blank" rel="nofollow noopener">Google Scholar</a>.<br><br><strong>Important information:</strong><br>Regular research articles submitted to UMZh should not exceed 16 pages. The papers accepted for publication usually appear in the printed issue within one year after the decision (there is a queue of accepted articles).<br><br>Ukrains'kyi Matematychnyi Zhurnal encourages authors to submit short communications (up to 6 pages) which are considered as fast track communications and in case of positive decision are published in one of the nearest issues avoiding the general queue of the accepted articles.<br><br>Papers submitted in Ukrainian language and successfuly accepted after peer review appear in one of the nearest issues avoiding the general queue of the accepted articles. <br><br>Ukrains'kyi Matematychnyi Zhurnal considers for publication <em>review articles (up to 35 pages)</em>, i.e. surveys of previously published research on a topic.</p>https://umj.imath.kiev.ua/index.php/umj/article/view/8083Crossingless sheaves and their classes in the equivariant $K$-theory2025-01-03T13:17:58+02:00Galyna Dobrovolskagaldobr@gmail.com<p>UDC 517.9</p> <p>We introduce crossingless sheaves in certain equivariant derived categories, which are analogous to the Bezrukavnikov–Mirkovic exotic sheaves for two-block nilpotents.<span class="Apple-converted-space"> </span><span class="Apple-converted-space"> </span>The classes of crossingless sheaves are computed in the equivariant<span class="Apple-converted-space"> </span>$K$-theory of Cautis–Kamnitzer varieties.</p>2024-12-28T18:26:10+02:00Copyright (c) 2024 Galyna Dobrovolskahttps://umj.imath.kiev.ua/index.php/umj/article/view/8412Semigroup of weak endomorphisms of a partial equivalence relationship2025-01-03T13:19:51+02:00Yu. Zhuchokzhuchok.yu@gmail.comО. Toichkinazhuchok.yu@gmail.com<p>UDC 512.53</p> <p>We study the weak endomorphism semigroup of a<span class="Apple-converted-space"> </span>partial equivalence relation.<span class="Apple-converted-space"> </span>We describe necessary and sufficient conditions for the existence<span class="Apple-converted-space"> </span>of these endomorphisms and, in general, endotopisms.<span class="Apple-converted-space"> </span>We establish the conditions under which the set of all idempotents of the weak endomorphism semigroup of a strict partial equivalence is its subsemigroup, as well as the conditions of regularity and coregularity of the weak endomorphism semigroup.<span class="Apple-converted-space"> </span>In terms of the wreath product of a symmetric transformation semigroup and a small category,<span class="Apple-converted-space"> </span>we describe a faithful representation of the weak endomorphism semigroup of an arbitrary relation of a strict partial equivalence.</p>2024-12-28T18:27:01+02:00Copyright (c) 2024 Юрій Володимирович Жучокhttps://umj.imath.kiev.ua/index.php/umj/article/view/7995Domination number on an octagonal chain and an octagonal grid2025-01-02T14:44:56+02:00Miroslava Mihajlov Carevićmiroslavamihajlovcarevic@yahoo.com<p>UDC <span lang="EN-US">519.1</span></p> <p>Domination of the graph and topological indices are essential topics in the graph theory.<span class="Apple-converted-space"> </span>We analyze the problem of $k$-domination, $k\in\{1,2,3\}$, on octagonal chains and an octagonal grid.<span class="Apple-converted-space"> </span>We determine the minimal $k$-dominating sets and<span class="Apple-converted-space"> </span>$k$-domination $k$ numbers for a chain of octagons with two common vertices.<span class="Apple-converted-space"> </span>By using the obtained results, we determine the $k$-domination numbers for the grid of octagons<span class="Apple-converted-space"> </span>$O_{mxn}$ with $m,n\in N$.</p>2024-12-28T18:27:48+02:00Copyright (c) 2024 Miroslava Mihajlov Carevićhttps://umj.imath.kiev.ua/index.php/umj/article/view/8488Elements of Lévy analysis on the spaces of nonregular test and generalized functions2025-01-03T13:22:04+02:00N. Kachanovskynkachano@gmail.com<p>UDC 517.98</p> <p>We present a survey of some author's results related to the development of the<span class="Apple-converted-space"> </span>L\'evy analysis on the spaces of nonregular test and generalized functions.<span class="Apple-converted-space"> </span>The indicated spaces are constructed by using Lytvynov's generalization<span class="Apple-converted-space"> </span>of the chaotic representation property, which is a direct analog of decomposition of square-integrable random variables in the Hermite<span class="Apple-converted-space"> </span>orthogonal polynomials in the Gaussian analysis.<span class="Apple-converted-space"> </span>In this approach, numerous<span class="Apple-converted-space"> </span>definitions and statements are quite similar to their prototypes from the Gaussian analysis,<span class="Apple-converted-space"> </span>which is very convenient for applications.<span class="Apple-converted-space"> </span>The survey covers a fairly broad range of<span class="Apple-converted-space"> </span>issues, namely, an extended stochastic integral, a Hida stochastic derivative and their generalizations, the operators of stochastic differentiations and their analogs (generalizations), elements of the Wick<span class="Apple-converted-space"> </span>calculus, the relationship between the Wick calculus and integration, etc.</p>2024-12-28T18:32:49+02:00Copyright (c) 2024 Микола Качановськийhttps://umj.imath.kiev.ua/index.php/umj/article/view/8000On a subclass of starlike functions associated with a strip domain2025-01-03T13:25:42+02:00S. Sivaprasad Kumarnehaverma1480@gmail.comNeha Vermanehaverma1480@gmail.com<p>UDC 517.5</p> <p>We introduce a new subclass of starlike functions defined as<span class="Apple-converted-space"> </span>$\mathcal{S}^{*}_{\tau}:=\{f\in \mathcal{A}:zf'(z)/f(z) \prec 1+\arctan z=:\tau(z)\},$ where $\tau(z)$ maps the unit disk $\mathbb {D}:= \{z\in \mathbb{C}:|z|<1\}$ onto a strip domain. We deduce structural formulas, as well as the growth and distortion theorems for $\mathcal{S}^{*}_{\tau}.$<span class="Apple-converted-space"> </span>In addition, inclusion relations with some well-known subclasses of<span class="Apple-converted-space"> </span>$\mathcal{S}$ are established and<span class="Apple-converted-space"> </span>sharp radius estimates are obtained, as well as the sharp coefficient bounds for the initial five coefficients and the second and third order Hankel determinants of $\mathcal{S}^{*}_{\tau}.$</p>2024-12-28T18:33:35+02:00Copyright (c) 2024 Neha Vermahttps://umj.imath.kiev.ua/index.php/umj/article/view/7689Stabilization of homogeneous conformable fractional-order systems 2024-12-31T10:18:56+02:00Fehmi Mabroukfehmi.mabrouki@gmail.com<p>UDC 517.9</p> <p>We propose an explicit homogeneous feedback control under the assumption that a control Lyapunov function exists for an affine control conformable fractional-order system and satisfies a homogeneity condition. Furthermore, we demonstrate that the existence of a homogeneous control Lyapunov function for a homogeneous affine<span class="Apple-converted-space"> </span>conformable fractional-order system results in a homogeneous closed-loop system when applying the previous feedback control.</p>2024-12-28T18:34:25+02:00Copyright (c) 2024 Fehmi Mabroukhttps://umj.imath.kiev.ua/index.php/umj/article/view/8426On the application of one-dimensional dynamics in the study of infinite- dimensional dynamical systems and modeling of the distributed chaos2025-01-02T17:15:28+02:00O. Romanenkoeromanenko@bigmir.net<p>UDC 517.9</p> <p>We propose a brief survey of the applications of one-dimensional dynamics to the investifation of infinite-dimensional dynamical systems on the spaces of continuous and smooth functions, which were developed in the Department of Dynamical Systems Theory of the Institute of Mathematics of the National Academy of Sciences of Ukraine under the leadership of O. M. Sharkovsky.</p>2024-12-28T18:35:21+02:00Copyright (c) 2024 Олена Юріївна Романенкоhttps://umj.imath.kiev.ua/index.php/umj/article/view/7976Cellular algebras and Frobenius extensions arising from two-parameter permutation matrices2024-12-31T10:18:56+02:00Houzhi Hehouzhi157@qq.comHuabo Xuhuabo0567@163.com<p>UDC 512.5</p> <p>Let $n$ be a positive integer,<span class="Apple-converted-space"> </span>let $R$ be a (unitary associative) ring, and let $M_n(R)$ be the ring of all $n$ by $n$ matrices over $R.$<span class="Apple-converted-space"> </span>For a permutation $\sigma$ in the symmetry group $\Sigma_n$ and a ring automorphism $\varphi$ of $R,$<span class="Apple-converted-space"> </span>we introduce the definition of $\sigma$-$\varphi$ permutation matrices.<span class="Apple-converted-space"> </span>The set $B_n(\sigma, \varphi, R)$ of all $\sigma$-$\varphi$ permutation matrices is proved to be a subring of $M_n(R).$<span class="Apple-converted-space"> </span>We show that the extension $B_n(\sigma, \varphi, R) \subseteq M_n(R)$ is a separable Frobenius extension.<span class="Apple-converted-space"> </span>Moreover, if $R$ is a commutative cellular algebra over the invariant subring $R^\varphi$ of $R,$ then $B_n(\sigma, \varphi, R)$ is also a cellular algebra over $R^\varphi.$</p>2024-12-28T18:36:11+02:00Copyright (c) 2024 houzhi he, huabo xuhttps://umj.imath.kiev.ua/index.php/umj/article/view/8937Index of volume 76 of „Ukrainian Mathematical Journal”2025-01-02T17:16:19+02:00Ігор Editorial boardBohBykBoh@gmail.com2024-12-28T18:42:23+02:00Copyright (c) 2024 Ігор Биковський (Менеджер журналу)