Ukrains’kyi Matematychnyi Zhurnal
https://umj.imath.kiev.ua/index.php/umj
<h1>Ukrains’kyi Matematychnyi Zhurnal<br>(Ukrainian Mathematical Journal) <br><br></h1> <p>Editor-in-Chief: <a href="https://imath.kiev.ua/~tim/">A. N. Timokha</a><br><br>ISSN: <a href="http://dispatch.opac.d-nb.de/DB=1.1/LNG=EN/CMD?ACT=SRCHA&IKT=8&TRM=0041-6053" target="_blank" rel="nofollow noopener">0041-6053, 1027-3190</a></p> <p>Ukrains'kyi Matematychnyi Zhurnal (UMZh) was founded in May 1949. Journal is issued by <a href="http://imath.kiev.ua/?lang=en" target="_blank" rel="noopener">Institute of Mathematics NAS of Ukraine</a>. English version is reprinted in the Springer publishing house and called <a href="http://link.springer.com/journal/11253" target="_blank" rel="noopener">Ukrainian Mathematical Journal</a>.</p> <p>Ukrains'kyi Matematychnyi Zhurnal focuses on research papers in the principal fields of pure and applied mathematics. The journal is published monthly, each annual volume consists of 12 issues. Articles in Ukrainian and English are accepted for review. </p> <p>UMZh indexed in: <a href="http://www.ams.org/mathscinet/search/journaldoc.html?jc=UKRMJ" target="_blank" rel="nofollow noopener">MathSciNet</a>, <a href="https://zbmath.org/journals/?q=se:00000215" target="_blank" rel="nofollow noopener">zbMATH</a>, <a href="http://www.scopus.com/source/sourceInfo.uri?sourceId=130147&origin=resultslist" target="_blank" rel="nofollow noopener">Scopus</a>, <a href="http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&Full=Ukrainian%20Mathematical%20Journal" target="_blank" rel="nofollow noopener">Web of Science</a>, <a href="https://scholar.google.com.ua/citations?hl=uk&user=fZruD2sAAAAJ&view_op=list_works" target="_blank" rel="nofollow noopener">Google Scholar</a>.<br><br><strong>Important information:</strong><br>Regular research articles submitted to UMZh should not exceed 16 pages. The papers accepted for publication usually appear in the printed issue within one year after the decision (there is a queue of accepted articles).<br><br>Ukrains'kyi Matematychnyi Zhurnal encourages authors to submit short communications (up to 6 pages) which are considered as fast track communications and in case of positive decision are published in one of the nearest issues avoiding the general queue of the accepted articles.<br><br>Papers submitted in Ukrainian language and successfuly accepted after peer review appear in one of the nearest issues avoiding the general queue of the accepted articles. <br><br>Ukrains'kyi Matematychnyi Zhurnal considers for publication <em>review articles (up to 35 pages)</em>, i.e. surveys of previously published research on a topic.</p>Institute of Mathematics, NAS of Ukraineen-USUkrains’kyi Matematychnyi Zhurnal1027-3190Crossingless sheaves and their classes in the equivariant $K$-theory
https://umj.imath.kiev.ua/index.php/umj/article/view/8083
<p>UDC 517.9</p> <p>We introduce crossingless sheaves in certain equivariant derived categories, which are analogous to the Bezrukavnikov–Mirkovic exotic sheaves for two-block nilpotents.<span class="Apple-converted-space"> </span><span class="Apple-converted-space"> </span>The classes of crossingless sheaves are computed in the equivariant<span class="Apple-converted-space"> </span>$K$-theory of Cautis–Kamnitzer varieties.</p>Galyna Dobrovolska
Copyright (c) 2024 Galyna Dobrovolska
http://creativecommons.org/licenses/by/4.0
2024-12-282024-12-2876121715–17261715–172610.3842/umzh.v76i12.8083Semigroup of weak endomorphisms of a partial equivalence relationship
https://umj.imath.kiev.ua/index.php/umj/article/view/8412
<p>UDC 512.53</p> <p>We study the weak endomorphism semigroup of a<span class="Apple-converted-space"> </span>partial equivalence relation.<span class="Apple-converted-space"> </span>We describe necessary and sufficient conditions for the existence<span class="Apple-converted-space"> </span>of these endomorphisms and, in general, endotopisms.<span class="Apple-converted-space"> </span>We establish the conditions under which the set of all idempotents of the weak endomorphism semigroup of a strict partial equivalence is its subsemigroup, as well as the conditions of regularity and coregularity of the weak endomorphism semigroup.<span class="Apple-converted-space"> </span>In terms of the wreath product of a symmetric transformation semigroup and a small category,<span class="Apple-converted-space"> </span>we describe a faithful representation of the weak endomorphism semigroup of an arbitrary relation of a strict partial equivalence.</p>Yu. ZhuchokО. Toichkina
Copyright (c) 2024 Юрій Володимирович Жучок
http://creativecommons.org/licenses/by/4.0
2024-12-282024-12-2876121727–17371727–173710.3842/umzh.v76i12.8412Domination number on an octagonal chain and an octagonal grid
https://umj.imath.kiev.ua/index.php/umj/article/view/7995
<p>UDC <span lang="EN-US">519.1</span></p> <p>Domination of the graph and topological indices are essential topics in the graph theory.<span class="Apple-converted-space"> </span>We analyze the problem of $k$-domination, $k\in\{1,2,3\}$, on octagonal chains and an octagonal grid.<span class="Apple-converted-space"> </span>We determine the minimal $k$-dominating sets and<span class="Apple-converted-space"> </span>$k$-domination $k$ numbers for a chain of octagons with two common vertices.<span class="Apple-converted-space"> </span>By using the obtained results, we determine the $k$-domination numbers for the grid of octagons<span class="Apple-converted-space"> </span>$O_{mxn}$ with $m,n\in N$.</p>Miroslava Mihajlov Carević
Copyright (c) 2024 Miroslava Mihajlov Carević
http://creativecommons.org/licenses/by/4.0
2024-12-282024-12-2876121738–17511738–175110.3842/umzh.v76i12.7995Elements of Lévy analysis on the spaces of nonregular test and generalized functions
https://umj.imath.kiev.ua/index.php/umj/article/view/8488
<p>UDC 517.98</p> <p>We present a survey of some author's results related to the development of the<span class="Apple-converted-space"> </span>L\'evy analysis on the spaces of nonregular test and generalized functions.<span class="Apple-converted-space"> </span>The indicated spaces are constructed by using Lytvynov's generalization<span class="Apple-converted-space"> </span>of the chaotic representation property, which is a direct analog of decomposition of square-integrable random variables in the Hermite<span class="Apple-converted-space"> </span>orthogonal polynomials in the Gaussian analysis.<span class="Apple-converted-space"> </span>In this approach, numerous<span class="Apple-converted-space"> </span>definitions and statements are quite similar to their prototypes from the Gaussian analysis,<span class="Apple-converted-space"> </span>which is very convenient for applications.<span class="Apple-converted-space"> </span>The survey covers a fairly broad range of<span class="Apple-converted-space"> </span>issues, namely, an extended stochastic integral, a Hida stochastic derivative and their generalizations, the operators of stochastic differentiations and their analogs (generalizations), elements of the Wick<span class="Apple-converted-space"> </span>calculus, the relationship between the Wick calculus and integration, etc.</p>N. Kachanovsky
Copyright (c) 2024 Микола Качановський
http://creativecommons.org/licenses/by/4.0
2024-12-282024-12-2876121752–17821752–178210.3842/umzh.v76i12.8488On a subclass of starlike functions associated with a strip domain
https://umj.imath.kiev.ua/index.php/umj/article/view/8000
<p>UDC 517.5</p> <p>We introduce a new subclass of starlike functions defined as<span class="Apple-converted-space"> </span>$\mathcal{S}^{*}_{\tau}:=\{f\in \mathcal{A}:zf'(z)/f(z) \prec 1+\arctan z=:\tau(z)\},$ where $\tau(z)$ maps the unit disk $\mathbb {D}:= \{z\in \mathbb{C}:|z|<1\}$ onto a strip domain. We deduce structural formulas, as well as the growth and distortion theorems for $\mathcal{S}^{*}_{\tau}.$<span class="Apple-converted-space"> </span>In addition, inclusion relations with some well-known subclasses of<span class="Apple-converted-space"> </span>$\mathcal{S}$ are established and<span class="Apple-converted-space"> </span>sharp radius estimates are obtained, as well as the sharp coefficient bounds for the initial five coefficients and the second and third order Hankel determinants of $\mathcal{S}^{*}_{\tau}.$</p>S. Sivaprasad KumarNeha Verma
Copyright (c) 2024 Neha Verma
http://creativecommons.org/licenses/by/4.0
2024-12-282024-12-2876121783–18011783–180110.3842/umzh.v76i12.8000Stabilization of homogeneous conformable fractional-order systems
https://umj.imath.kiev.ua/index.php/umj/article/view/7689
<p>UDC 517.9</p> <p>We propose an explicit homogeneous feedback control under the assumption that a control Lyapunov function exists for an affine control conformable fractional-order system and satisfies a homogeneity condition. Furthermore, we demonstrate that the existence of a homogeneous control Lyapunov function for a homogeneous affine<span class="Apple-converted-space"> </span>conformable fractional-order system results in a homogeneous closed-loop system when applying the previous feedback control.</p>Fehmi Mabrouk
Copyright (c) 2024 Fehmi Mabrouk
http://creativecommons.org/licenses/by/4.0
2024-12-282024-12-2876121802–18121802–181210.3842/umzh.v76i12.7689On the application of one-dimensional dynamics in the study of infinite- dimensional dynamical systems and modeling of the distributed chaos
https://umj.imath.kiev.ua/index.php/umj/article/view/8426
<p>UDC 517.9</p> <p>We propose a brief survey of the applications of one-dimensional dynamics to the investifation of infinite-dimensional dynamical systems on the spaces of continuous and smooth functions, which were developed in the Department of Dynamical Systems Theory of the Institute of Mathematics of the National Academy of Sciences of Ukraine under the leadership of O. M. Sharkovsky.</p>O. Romanenko
Copyright (c) 2024 Олена Юріївна Романенко
http://creativecommons.org/licenses/by/4.0
2024-12-282024-12-2876121813–18371813–183710.3842/umzh.v76i12.8426Cellular algebras and Frobenius extensions arising from two-parameter permutation matrices
https://umj.imath.kiev.ua/index.php/umj/article/view/7976
<p>UDC 512.5</p> <p>Let $n$ be a positive integer,<span class="Apple-converted-space"> </span>let $R$ be a (unitary associative) ring, and let $M_n(R)$ be the ring of all $n$ by $n$ matrices over $R.$<span class="Apple-converted-space"> </span>For a permutation $\sigma$ in the symmetry group $\Sigma_n$ and a ring automorphism $\varphi$ of $R,$<span class="Apple-converted-space"> </span>we introduce the definition of $\sigma$-$\varphi$ permutation matrices.<span class="Apple-converted-space"> </span>The set $B_n(\sigma, \varphi, R)$ of all $\sigma$-$\varphi$ permutation matrices is proved to be a subring of $M_n(R).$<span class="Apple-converted-space"> </span>We show that the extension $B_n(\sigma, \varphi, R) \subseteq M_n(R)$ is a separable Frobenius extension.<span class="Apple-converted-space"> </span>Moreover, if $R$ is a commutative cellular algebra over the invariant subring $R^\varphi$ of $R,$ then $B_n(\sigma, \varphi, R)$ is also a cellular algebra over $R^\varphi.$</p>Houzhi HeHuabo Xu
Copyright (c) 2024 houzhi he, huabo xu
http://creativecommons.org/licenses/by/4.0
2024-12-282024-12-2876121838–18501838–185010.3842/umzh.v76i12.7976Index of volume 76 of „Ukrainian Mathematical Journal”
https://umj.imath.kiev.ua/index.php/umj/article/view/8937
Ігор Editorial board
Copyright (c) 2024 Ігор Биковський (Менеджер журналу)
http://creativecommons.org/licenses/by/4.0
2024-12-282024-12-2876121851–18561851–185610.3842/umzh.v76i12.8937