Mittag-Leffler stability and stabilization of some classes of time-varying fractional systems
Abstract
UDC 517.9
We consider some classes of time-varying fractional systems and study the problem of stabilization for these systems with norm-bounded controls. We use time-varying Lyapunov functions to analyze the Mittag-Leffler stability of these systems. A numerical example is given to illustrate the efficiency of the obtained result.
References
Z. Artstein, Stabilization with relaxed controls, Nonlinear Anal., 7, № 11, 1163–1173 (1983). DOI: https://doi.org/10.1016/0362-546X(83)90049-4
B. Bandyopadhyay, S. Kamal, Stabilization and control of fractional order systems: a sliding mode approach, Lect. Notes Electr. Eng., 317, Springer Int. Publ., Switzerland (2015). DOI: https://doi.org/10.1007/978-3-319-08621-7_3
D. Iethelm, K. AI, The analysis of fractional differential equations. an application-oriented exposition using differential operators of Caputo type, Lect. Notes Math., 2004, Springer-Verlag, Berlin (2010). DOI: https://doi.org/10.1007/978-3-642-14574-2_8
K. Hassan, Nonlinear systems, third ed., Prentice Hall (2002).
T. Kharrat, F. Mabrouk, F. Omri, Stabilization of fractional bilinear systems with multiple inputs, Appl. Math. J. Chinese Univ., 38, 78–88 (2023). DOI: https://doi.org/10.1007/s11766-023-3976-5
B. Kumar Lenka, Time-varying Lyapunov functions and Lyapunov stability of nonautonomous fractional order systems, Int. J. Appl. Math., 32, 111–130 (2019). DOI: https://doi.org/10.12732/ijam.v32i1.11
Y. Li, Y. Q. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. and Appl., 59, 1810–1821 (2010). DOI: https://doi.org/10.1016/j.camwa.2009.08.019
Y. H. Lim, K. K. Oh, H. S. Ahn, Stability and stabilization of fractional-order linear systems subject to input saturation, IEEE Trans. Automat. Control, 58, 1062–1067 (2013). DOI: https://doi.org/10.1109/TAC.2012.2218064
K. Oldham, J. Spanier, The fractional calculus, Academic Press, New York (1974).
V. N. Phat, Q. P. Ha, New characterization of controllability via stabilizability and Riccati equation for LTV systems, IMA J. Math. Control and Inform., 25, 419–429 (2008). DOI: https://doi.org/10.1093/imamci/dnn007
J. Sabatier, M. Moze, C. Farges, LMI stability conditions for fractional order systems, Comput. Math. and Appl., 59, 1594–1609 (2010). DOI: https://doi.org/10.1016/j.camwa.2009.08.003
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Sci. Publ. (1993).
E. S. A. Shahri, A. Alfi, J. A. Tenreiro Machado, Robust stability and stabilization of uncertain fractional order systems subject to input saturation, J. Vib. and Control, 24, 3676–3683 (2018). DOI: https://doi.org/10.1177/1077546317708927
M. Slemrodt, Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control, Math. Control, Signals and Systems, 265–285 (1989). DOI: https://doi.org/10.1007/BF02551387
E. D. Sontag, A ``universal'' construction of Artsteins theorem on nonlinear stabilization, Systems and Control Lett., 13, № 2, 117–123 (1989). DOI: https://doi.org/10.1016/0167-6911(89)90028-5
J. M. Yu, H. Hu, S. B. Zhou, X. R. Lin, Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems, Automatica, 49, 1798–1803 (2013). DOI: https://doi.org/10.1016/j.automatica.2013.02.041
F. R. Zhang, C. P. Li, Y. Q. Chen, Asymptotical stability of nonlinear fractional differential system with Caputo derivative, Int. J. Different. Equat., 635–165 (2011). DOI: https://doi.org/10.1155/2011/635165
Copyright (c) 2024 Faouzi Omri
This work is licensed under a Creative Commons Attribution 4.0 International License.