Two-point boundary-value problems for differential equations with generalized piecewise-constant argument

  • Anar T. Assanova Institute of Mathematics and Mathematical Modeling, Almaty, and International Information Technology University, Almaty, Kazakhstan
  • Roza E. Uteshova Institute of Mathematics and Mathematical Modeling, Almaty, and International Information Technology University, Almaty, Kazakhstan

Анотація

УДК 517.9

Двоточкові крайові задачі для диференціальних рівнянь з узагальненим кусково-сталим аргументом

Розглянуто двоточкову крайову задачу для системи диференціальних рівнянь із узагальненим кусково-сталим аргументом. Для її розв'язання запропоновано конструктивний метод, що базується на методі параметризації Джумабаєва та новому підході до поняття загального розв'язку. Інтервал розбито з урахуванням особливостей аргументу. Значення розв'язку у внутрішніх точках розбиття розглянуто як додаткові параметри, а диференціальне рівняння перетворено на систему задач Коші з параметрами, заданими на підінтервалах розбиття. За допомогою розв'язків цих задач отримано новий загальний розв'язок диференціального рівняння з кусково-сталим аргументом і встановлено його властивості. Новий загальний розв'язок, граничні умови та умови неперервності розв'язку у внутрішніх точках розбиття використовують для побудови лінійної системи алгебраїчних рівнянь щодо введених параметрів. Коефіцієнти та праву частину системи знайдено шляхом розв'язування задач Коші для лінійних звичайних диференціальних рівнянь на підінтервалах розбиття. Показано, що розв'язність крайової задачі еквівалентна розв'язності побудованої системи. Запропоновано алгоритми методу параметризації для розв'язування досліджуваної крайової задачі та встановлено необхідні й достатні умови її коректної постановки.

Посилання

S. Busenberg, K. L. Cooke, Models of vertically transmitted diseases with sequential-continuous dynamics, Nonlinear Phenomena in Mathematical Sciences, V. Lakshmikantham (Ed.), Acad. Press, New York (1982), p. 179–187.

S. M. Shah, J. Wiener, Advanced differential equations with piecewise constant argument deviations, Int. J. Math. and Math. Sci., 6, 671–703 (1983).

K. L. Cooke, J. Wiener, Retarded differential equations with piecewise constant delays, J. Math. Anal. and Appl., 99, 265–297 (1984).

I. Gyori, G. Ladas, Oscillation theory of delay differential equations with applications, Oxford Univ. Press, New York (1991).

J. Hale, S. M. V. Lune, Introduction to functional differential equations, Springer-Verlag, New York (1993).

J. Wiener, Generalized solutions of functional differential equations, World Sci., Singapore (1993).

S. Busenberg, K. L. Cooke, Vertically transmitted diseases, Models and Dynamics, Springer-Verlag, Berlin, Heidelberg (1993).

A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Sci., Singapore (1995).

O. Diekmann, S. A. van Gils, S. M. V. Lunel, H.-O. Walther, Delay equations. functional-, complex-, and nonlinear analysis, Springer-Verlag, New York (1995).

M. U. Akhmet, Integral manifolds of differential equations with piecewise constant argument of generalized type, Nonlinear Anal., 66, 367–383 (2007).

M. U. Akhmet, On the reduction principle for differential equations with piecewise constant argument of generalized type, J. Math. Anal. and Appl., 336, 646–663 (2007).

M. U. Akhmet, Almost periodic solutions of differential equations with piecewise constant argument of generalized type, Nonlinear Anal.: Hybrid Syst. and Appl., 2, 456–467 (2008).

M. U. Akhmet, Stability of differential equations with piecewise constant argument of generalized type, Nonlinear Anal., 68, 794–803 (2008).

M. U. Akhmet, Principles of discontinuous dynamical systems, Springer, New York (2010).

M. U. Akhmet, Nonlinear hybrid continuous/discrete-time models, Atlantis Press, Paris (2011).

M. U. Akhmet, E. Yilmaz, Neural networks with discontinuous/impact activations, Springer, New York (2013).

M. Akhmet, M. O. Fen, Replication of chaos in neural networks, economics and physics, Nonlinear Phys. Sci., Springer, Higher Education Press, Beijing, Heidelberg (2016).

M. Akhmet, A. Kashkynbayev, Bifurcation in autonomous and nonautonomous differential equations with discontinuities, Springer, Higher Education Press (2017).

M. Akhmet, M. Dauylbayev, A. Mirzakulova, A singularly perturbed differential equation with piecewise constant argument of generalized type, Turkish J. Math., 42, 1680–1685 (2018).

M. Akhmet, Almost periodicity, chaos, and asymptotic equivalence, Springer (2020).

S. Castillo, M. Pinto, R. Torres, Asymptotic formulae for solutions to impulsive differential equations with piecewise constant argument of generalized type, Electron. J. Different. Equat., 40, 1–22 (2019).

F. Q. Zhang, BVPs for second order differential equations with piecewise constant arguments, Ann. Different. Equat., 9, 369–374 (1993).

J. J. Nieto, R. Rodriguez-Lopez, Existence and approximation of solutions for nonlinear functional differential equations with periodic boundary value conditions, Comput. Math. Appl., 40, 433–442 (2000).

G. Seifert, Second order scalar functional differential equations with piecewise constant arguments, J. Difference Equat. and Appl., 8, 427–445 (2002).

G. Seifert, Second-order neutral delay-differential equations with piecewise constant time dependence, J. Math. Anal. and Appl., 281, 1–9 (2003).

R. Yuan, On the second-order differential equation with piecewise constant argument and almost periodic coefficients, Nonlinear Anal., 52, 1411–1440 (2003).

J. J. Nieto, R. Rodriguez-Lopez, Remarks on periodic BVPs for functional differential equations, J. Comput. and Appl. Math., 158, 339–353 (2003).

A. Cabada, J. B. Ferreiro, J. J. Nieto, Green's function and comparison principles for first order periodic differential equations with piecewise constant arguments, J. Math. Anal. and Appl., 291, 690–697 (2004).

J. J. Nieto, R. Rodriguez-Lopez, Green's function for second order periodic BVPs with piecewise constant argument, J. Math. Anal. and Appl., 304, 33–57 (2005).

P. Yang, Y. Liu, W. Ge, Green's function for second order differential equations with piecewise constant, Nonlinear Anal., 64, 1812–1830 (2006).

J. J. Nieto, R. Rodriguez-Lopez, Monotone method for first-order functional differential equations, Comput. Math. Appl., 52, 471–484 (2006).

J. J. Nieto, R. Rodriguez-Lopez, Some considerations on functional differential equations of advanced type, Math. Nachr., 283, № 10, 1439–1455 (2010).

R. Rodriguez-Lopez, Nonlocal BVPs for second-order functional differential equations, Nonlinear Anal., 74, 7226–7239 (2011).

M. A. Dominguez-Perez, R. Rodriguez-Lopez, Multipoint BVPs of Neumann type for functional differential equations, Nonlinear Anal. Real World Appl., 13, 1662–1675 (2012).

D. S. Dzhumabayev, Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation, Comput. Math. and Math. Phys., 29, № 1, 34–46 (1989).

D. S. Dzhumabaev, On one approach to solve the linear boundary-value problems for Fredholm integro-differential equations, J. Comput. and Appl. Math., 294, № 2, 342–357 (2016); https://doi.org/ 10.1016/j.cam.2015.08.023.

D. S. Dzhumabaev, Computational methods of solving the BVPs for the loaded differential and Fredholm integro-differential equations, Math. Methods Appl. Sci., 41, 1439–1462 (2018).

D. S. Dzhumabaev, New general solutions to linear Fredholm integro-differential equations and their applications on solving the BVPs, J. Comput. and Appl. Math., 327, 79–108 (2018).

D. S. Dzhumabaev, New general solutions of ordinary differential equations and the methods for the solution of boundary-value problems, Ukr. Math. J., 71, № 7, 1006–1031 (2019).

D. S. Dzhumabaev, Well-posedness of nonlocal boundary-value problem for a system of loaded hyperbolic equations and an algorithm for finding its solution, J. Math. Anal. and Appl., 461, № 1, 817–836 (2018); https://doi.org/ 10.1016/j.jmaa.2017.12.005.

A. T. Assanova, Z. M. Kadirbayeva, On the numerical algorithms of parametrization method for solving a two-point boundary-value problem for impulsive systems of loaded differential equations, Comput. Appl. Math., 37, № 4, 4966–4976 (2018).

A. T. Assanova, Z. M. Kadirbayeva, Periodic problem for an impulsive system of the loaded hyperbolic equations, Electron. J. Different. Equat., 72, 1–8 (2018).

A. T. Assanova, N. B. Iskakova, N. T. Orumbayeva, On the well-posedness of periodic problems for the system of hyperbolic equations with finite time delay, Math Methods Appl. Sci., 43, № 2, 881–902 (2020).

D. S. Dzhumabaev, E. A. Bakirova, S. T. Mynbayeva, A method of solving a nonlinear boundary value problem with a parameter for a loaded differential equation, Math. Methods Appl. Sci., 43, 1788–1802 (2020).

A. T. Assanova, E. A. Bakirova, Z. M. Kadirbayeva, R. E. Uteshova, A computational method for solving a problem with parameter for linear systems of integro-differential equations, Comput. Appl. Math., 39, № 3 (2020); https://doi.org/10.1007/s40314-020-01298-1. DOI: https://doi.org/10.1007/s40314-020-01298-1

Опубліковано
02.06.2024
Як цитувати
AssanovaA. T., і UteshovaR. E. «Two-Point Boundary-Value Problems for Differential Equations With Generalized Piecewise-Constant Argument». Український математичний журнал, вип. 76, вип. 5, Червень 2024, с. 631 -46, doi:10.3842/umzh.v76i5.7384.
Розділ
Статті