Skip to main content
Log in

New Inequalities for the p-Angular Distance in Normed Spaces with Applications

  • Published:
Ukrainian Mathematical Journal Aims and scope

For nonzero vectors x and y in the normed linear space (X, ‖ ⋅ ‖), we can define the p-angular distance by

$$ {\alpha}_p\left[x,y\right]:=\left\Vert {\left\Vert x\right\Vert}^{p-1}x-{\left\Vert y\right\Vert}^{p-1}y\right\Vert . $$

We show (among other results) that, for p ≥ 2,

$$ \begin{array}{l}{\alpha}_p\left[x,y\right]\le p\left\Vert y-x\right\Vert {\displaystyle \underset{0}{\overset{1}{\int }}{\left\Vert \left(1-t\right)x+ty\right\Vert}^{p-1}dt}\hfill \\ {}\kern3.36em \le p\left\Vert y-x\right\Vert \left[\frac{{\left\Vert x\right\Vert}^{p-1}+{\left\Vert y\right\Vert}^{p-1}}{2}+{\left\Vert \frac{x+y}{2}\right\Vert}^{p-1}\right]\hfill \\ {}\kern3.36em \le p\left\Vert y-x\right\Vert \frac{{\left\Vert x\right\Vert}^{p-1}+{\left\Vert y\right\Vert}^{p-1}}{2}\le p\left\Vert y-x\right\Vert {\left[ \max \left\{\left\Vert x\right\Vert, \left\Vert y\right\Vert \right\}\right]}^{p-1},\hfill \end{array} $$

for any x, yX. This improves a result of Maligranda from [“Simple norm inequalities,” Amer. Math. Month., 113, 256–260 (2006)] who proved the inequality between the first and last terms in the estimation presented above. The applications to functions f defined by power series in estimating a more general “distance” ‖f(‖x‖)x − f(‖y‖)y‖ for some x, yX are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, “Vector-valued Laplace transforms and Cauchy problems,” 2nd edn., Monogr. Math., Birkhäuser / Springer Basel AG, Basel, 96 (2011).

  2. N. Bourbaki, Integration, Herman, Paris (1965).

    MATH  Google Scholar 

  3. J. A. Clarkson, “Uniform convex spaces,” Trans. Amer. Math. Soc., 40, 396–414 (1936).

    Article  MathSciNet  Google Scholar 

  4. G. N. Hile, “Entire solutions of linear elliptic equations with Laplacian principal part,” Pacif. J. Math., 62, 124–140 (1976).

    Article  MathSciNet  Google Scholar 

  5. S. S. Dragomir, “Inequalities for the p-angular distance in normed linear spaces,” Math. Inequal. Appl., 12, No. 2, 391–401 (2009).

    MathSciNet  Google Scholar 

  6. S. S. Dragomir and C. E. M. Pearce, “Selected topics on Hermite–Hadamard inequalities and applications,” RGMIA Monogr. (2000) [Online http://rgmia.org/monographs/hermite_hadamard.html].

  7. C. F. Dunkl and K. S. Williams, “A simple norm inequality,” Amer. Math. Month., 71, 53–54 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  8. V. I. Gurarii, “Strengthening of the Dunkl–Williams inequality on the norms of elements of Banach spaces,” Dop. Akad. Nauk Ukr. RSR, 1966, 35–38 (1966).

    MathSciNet  Google Scholar 

  9. E. Kikianty and S. S. Dragomir, “Hermite–Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space,” Math. Inequal. Appl., 13, No. 1, 1–32 (2010).

    MATH  MathSciNet  Google Scholar 

  10. E. Kikianty and G. Sinnamon, “The p-HH norms on Cartesian powers and sequence spaces,” J. Math. Anal. Appl., 359, No. 2, 765–779 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Maligranda, “Simple norm inequalities,” Amer. Math. Month., 113, 256–260 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  12. J. L. Massera and J. J. Schäffer, “Linear differential equations and functional analysis. I,” Ann. Math., 67, 517–573 (1958).

    Article  MATH  Google Scholar 

  13. D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer, Dordrecht, (1993).

    Book  MATH  Google Scholar 

  14. A.W. Roberts and D. E. Varberg, “Convex functions,” Pure Appl. Math., 57 (1973).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 1, pp. 19–31, January, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragomir, S.S. New Inequalities for the p-Angular Distance in Normed Spaces with Applications. Ukr Math J 67, 19–32 (2015). https://doi.org/10.1007/s11253-015-1062-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1062-8

Keywords

Navigation