Skip to main content
Log in

On One Extremal Problem for a Seminorm on the Space l1 with Weight

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

Let \(\alpha = \left\{ {\alpha _j } \right\}_{j \in \mathbb{N}}\) be a nondecreasing sequence of positive numbers and let l 1,α be the space of real sequences \(\xi = \left\{ {\xi _j } \right\}_{j \in \mathbb{N}}\) for which \(\left\| \xi \right\|_{1,\alpha } :\; = \sum {_{j = 1}^\infty } \alpha _j \left| {\xi _j } \right| < + \infty\). We associate every sequence ξ from l 1,α with a sequence \(\xi * = \left\{ {\left| {\xi _{\varphi (j)} } \right|} \right\}_{j \in \mathbb{N}}\), where ϕ(·) is a permutation of the natural series such that \(\left| {\xi _{\varphi (j)} } \right| \geqslant \left| {\xi _{\varphi (j + 1)} } \right|\), j ∈ ℕ. If p is a bounded seminorm on l 1,α and \(\omega _m :\; = \left\{ {\underbrace {1, \ldots ,1}_m,\;0,\;0,\; \ldots } \right\}\), then

$$\mathop {\sup }\limits_{\xi \ne 0,\;\xi \ne 1_{1,\alpha } } \frac{{p\left( {\xi *} \right)}}{{\left\| \xi \right\|_{1,\alpha } }} = \mathop {\sup }\limits_{m \in \mathbb{N}} \frac{{p\left( {\omega _m } \right)}}{{\sum {_{s = 1}^m } \alpha _s }}.$$

Using this equality, we obtain several known statements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators in a Hilbert Space [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  2. A. I. Stepanets, “Approximation characteristics of the spaces S pϕ ,” Ukr. Mat. Zh., 53, No.3, 392–416 (2001).

    MATH  MathSciNet  Google Scholar 

  3. A. I. Stepanets, “Approximation characteristics of the spaces S pϕ in different metrics,” Ukr. Mat. Zh., 53, No.8, 1121–1146 (2001).

    MATH  MathSciNet  Google Scholar 

  4. A. I. Stepanets, Methods of Approximation Theory [in Russian], vol. 2, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (2002).

    Google Scholar 

  5. O. I. Stepanets and A. L. Shydlich, “Best n-term approximations by Λ-methods in the spaces S pϕ ,” Ukr. Mat. Zh., 55, No.8, 1107–1126 (2003).

    Article  MATH  Google Scholar 

  6. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities [Russian translation], Inostrannaya Literatura, Moscow (1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 57, No. 7, pp. 1002–1006, July, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radzievskaya, E.I., Radzievskii, G.V. On One Extremal Problem for a Seminorm on the Space l1 with Weight. Ukr Math J 57, 1183–1187 (2005). https://doi.org/10.1007/s11253-005-0255-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-005-0255-y

Keywords

Navigation