Fibration of idempotent measures

Abstract

UDC 515.12

We prove that the idempotent barycenter map restricted to the points with nontrivial fibers is a trivial fibration with Hilbert cube fibers whenever it is open.

References

M. Akian, Densities of idempotent measures and large deviations, Trans. Amer. Math. Soc., 351, No. 11, 4515 – 4543 (1999)б https://doi.org/10.1090/S0002-9947-99-02153-4

L. Bazylevych, D. Repovs, M. Zarichnyi, Spaces of idempotent measures of compact metric spaces, Topology and Appl., 157, no. 1, 136 – 144 (2010), https://doi.org/10.1016/j.topol.2009.04.040

L. Q. Eifler, Openness of convex averaging, Glas. Mat. Ser. III, 32, No. 1, 67 – 72 (1977).

V. V. Fedorchuk, On a barycentric map of probability measures, Vestn. Mosk. Univ, Ser. I, No. 1, 42 – 47 (1992).

V. V. Fedorchuk, On barycentrically open bicompacta, Sib. Math. J., 33, 1135 – 1139 (1992), https://doi.org/10.1007/BF00971039

V. V. Fedorchuk, Probability measures in topology, Russian Math. Surveys, 46, 41 – 80 (1991), https://doi.org/10.1070/RM1991v046n01ABEH002722

V. Fedorchuk, A. Chigogidze, Absolute retracts and infinitedimensional manifolds, Nauka, Moskow (1992).

S. Gaubert, R. Katz, Max-plus convex geometry, Lect. Notes Comput. Sci., 4136, 192 – 206 2006, https://doi.org/10.1007/11828563_13

G. L. Litvinov, The Maslov dequantization, idempotent and tropical mathematics: a very brief introduction, Contemp. Math., 377, 1 – 17 (2005), https://doi.org/10.1090/conm/377/6982

V. P. Maslov, S. N. Samborskii, Idempotent Analysis, Adv. Soviet Math., Vol. 13, Amer. Math. Soc., Providence (1992), https://doi.org/10.1090/advsov/013

R. C. O’Brien, On the openness of the barycentre map, Math. Ann., 223, 207 – 212 (1976), https://doi.org/10.1007/BF01360953

S. Papadopoulou, On the geometry of stable compact convex sets, Math. Ann., 229, no. 3, 193 – 200 (1977), https://doi.org/10.1007/BF01391464

T. Radul, Absolute retracts and equiconnected monads, Topology and Appl., 202, 1 – 6 (2016), https://doi.org/10.1016/j.topol.2015.12.061

T. Radul, On the openness of the idempotent barycenter map, Topology and Appl., (2019), https://doi.org/10.1016/j.topol.2019.07.003

T. Radul, On the baricentric map of probability measures, 95 Vestn. Mosk. Univ., Ser. I, No 1, 3 – 6 (1994).

T. Radul, On baricentrically soft compacta, Fund. Math., 148, no. 1, 27 – 33 (1995), https://doi.org/10.4064/fm-148-1-27-33

T. Radul, Idempotent measures:absolute retracts and soft maps, Topol. Methods Nonlinear Anal. (submitted).

T. N. Radul, M. M. Zarichnyi, Monads in the category of compacta, Uspekhi Mat. Nauk., 50, no. 3, 83 – 108 (1995), https://doi.org/10.1070/RM1995v050n03ABEH002563

E. V.Shchepin, Topology of limit spaces of uncountable inverse spectra, Russian Math. Surveys, 31, 191--226 (1976).

H. Torunczyk, J. West, Fibrations and Bundles with Hilbert cube manifold fibers, Mem. Amer. Math. Soc., 80, No. 406 (1989), https://doi.org/10.1090/memo/0406

M. van de Vel, Theory of convex strutures, North-Holland, 1993.

M. Zarichnyi, Spaces and mappings of idempotent measures, Izv. Ross. Akad. Nauk Ser. Mat., 74, no. 3, 45 – 64 (2010), https://doi.org/10.1070/IM2010v074n03ABEH002495

M. Zarichnyi, Michael selection theorem for max-plus compact convex sets, Topology Proc., 31, no. 2, 677 – 681 (2007).

K. Zimmermann, A general separation theorem in extremal algebras, Ekon.-Mat. Obz., 13, no. 2, 179 – 201 (1977).

Published
20.11.2020
How to Cite
Radul T. М. “Fibration of Idempotent Measures”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 11, Nov. 2020, pp. 1544-52, doi:10.37863/umzh.v72i11.1038.
Section
Research articles