$\lambda$-Almost summable spaces

  • E. Savaş Uşak Univ., Turkey

Abstract

UDC 517.5

In this paper, we investigate some new sequence spaces which arise from the notation of generalized de la Vallée-Poussin means and introduce the spaces of strongly $\lambda$-almost summable sequences. We also consider some topological results, characterization of strongly $\lambda$-almost regular matrices.

References

S. Bala, A study on characterization of some classes of matrix transformations between some sequence spaces, Ph. D. Thesis, A. M. U. Aligarh (1994).

S. Banach, Théorie des opérations linéaires. (French) [[Theory of linear operators]] , Warsaw (1932).

G. Das, B. Kuttner, S. Nanda, Some sequence spaces and absolute almost convergence, Trans. Amer. Math. Soc., 283, № 2, 729 – 739 (1984), https://doi.org/10.2307/1999158

J. P. Duran, Infinite matrices and almost convergence, Math. Z., 128, 75 – 83 (1972), https://doi.org/10.1007/BF01111514

H. J. Hamilton, J. D. Hill, On strong summability, Amer. J. Math., 60, no. 3, 588 – 594 (1938), https://doi.org/10.2307/2371600

B. Kuttner, Note on strong summability, J. London Math. Soc., 21, 118 – 222 (1946), https://doi.org/10.1007/BF01897108

J. P. King,Almost summable sequences, Proc. Amer. Math. Soc., 17, 1219 – 1225 (1966), https://doi.org/10.2307/2035714

G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80, 167 – 190 (1948), https://doi.org/10.1007/BF02393648

I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. (2), 18, 345 – 355 (1967), https://doi.org/10.1093/qmath/18.1.345

I. J. Maddox, J. W. Roles, Absolute convexity in certain topological linear spaces, Proc. Cambridge Phil. Soc., 66, 541 – 545 (1969), https://doi.org/10.1017/s0305004100045308

I. J. Maddox, Elements of functional analysis, Cambridge Univ. Press (1970).

S. Nanda, Some sequence spaces and almost convergence, J. Austral. Math. Soc. Ser. A, 22, no. 4, 446 – 455 (1976), https://doi.org/10.1017/s144678870001630x

E. Sava¸s, Matrix transformations and absolute almost convergence, Bull. Inst. Math. Acad. Sin., 15, № 3, 345--355 (1987).

E. Sava¸s, Almost convergence and almost summability, Tamkang J. Math., 21, № 4, 327--332 (1990).

E. Sava¸s, Some sequence spaces and almost convergence, Ann. Univ. Timiora, 30, № 2-3, 303--309 (1992).

P. Schaefer, Almost convergent and almost summable sequences, Proc. Amer. Math. Soc., 20, 51 – 54 (1969), https://doi.org/10.2307/2035960

Published
25.10.2020
How to Cite
Savaş E. “$\lambda$-Almost Summable Spaces”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 10, Oct. 2020, pp. 1410 -17, doi:10.37863/umzh.v72i10.396.
Section
Research articles