Kolmogorov widths of the Nikol’skii – Besov classes of periodic functions of many variables in the space of quasi-continuous functions

  • A. S. Romanyuk Institute of Mathematics of NAS of Ukraine
  • S. Ya. Yanchenko Inst. Math. Acad. Sci. Ukraine, Kiev
Keywords: Nikol'skii-Besov classes, Kolmogorov widths, space of quasi-continuous functions

Abstract

UDC 517.51

We obtain the order estimates of $M$-dimensional Kolmogorov width for the Nikol’skii – Besov classes with dominating mixed derivative of periodic functions of many variables in the metric of the space of quasi-continuous functions (QC-space).

References

A. S. Romanyuk, Entropy numbers and widths for the Nikol’skii – Besov classes of functions of many variables in the space $L_{infty}$, Anal. Math., 45, № 1, 133 – 151 (2019), https://doi.org/10.1007/s10476-018-0611-4 DOI: https://doi.org/10.1007/s10476-018-0611-4

A. S. Romanyuk, Entropy numbers and the widths of the classes $B_{p,θ}^r$ of periodic functionsof many variables, Ukr. Math. J., 68, № 10, 1403 – 1417 (2016). DOI: https://doi.org/10.1007/s11253-017-1315-9

A. S. Romanyuk, Estimation of the Entropy Numbers and Kolmogorov Widths for the Nikol’skii–Besov Classes of Periodic Functions of Many Variables, Ukr. Math. J., 67, № 11, 1540 – 1556 (2015). DOI: https://doi.org/10.1007/s11253-016-1186-5

V. N. Temliakov, Pryblyzhenye funktsyi s ohranychennoi smeshannoi proyzvodnoi, Tr. Mat. in-ta AN SSSR, 178, 1 – 112 (1986).

P. Y. Lyzorkyn, S. M. Nykolskyi, Prostranstva funktsyi smeshannoi hladkosty s dekompozytsyonnoi tochky zrenyia, Tr. Mat. yn-ta AN SSSR,187, 143 – 161 (1989).

S. M. Nykolskyi, Funktsyy s domynyruiushchei smeshannoi proyzvodnoi, udovletvoriaiushchei kratnomu uslovyiu Heldera, Syb. mat. zhurn., 4, № 6, 1342 – 1364 (1963).

T. Y. Amanov, Teoremy predstavlenyia y vlozhenyia dlia funktsyonalnykh prostranstv $S^{(r)}_{p,theta} B(mathbb{R}_n)$ and $S^{(r)}ast_{p,theta} B (0 leq x_j leq 2pi ; j = 1, . . . , n)$, Tr. Mat. in-ta AN SSSR,77, 5 – 34 (1965).

O. V. Besov, Yssledovanye odnoho semeistva funktsyonalnykh prostranstv v sviazy s teoremamy vlozhenyia y prodolzhenyia, Tr. Mat. in-ta AN SSSR, 60, 42 – 81 (1961).

S. M. Nykolskyi, Neravenstva dlia tselykh funktsyi konechnoi stepeny y ykh prymenenye v teoryy dyfferentsyruemykh funktsyi mnohykh peremennykh, Tr. Mat. in-ta AN SSSR,38, 244 – 278 (1951).

A. Kolmogoroff, Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse. (German) , Ann. Math., 37, 107 – 111 (1936), https://doi.org/10.2307/1968691 DOI: https://doi.org/10.2307/1968691

E. M. Haleev, Poperechnykov klassov Besova $B_{p,θ}^r (mathbb{T}_d)$ , Mat. zametky,69, № 5, 656 – 665 (2001). DOI: https://doi.org/10.4213/mzm529

A. S. Romanyuk, On Estimates of the Kolmogorov Widths of the Classes $B_{p,θ}^r$ in the Space $L_q$, Ukr. Math. J., 53, № 7, 996 – 1001 (2001).

A. S. Romanyuk, Kolmohorovskye poperechnyky klassov Besova $B_{p,θ}^r$ v metryke prostranstva $L_{infty }$ , Ukr. Mat. Visn., 2, № 2, 201 – 218 (2005).

A. S. Romanyuk, Kolmohorovskye y tryhonometrycheskye poperechnyky klassov Besova$B_{p,θ}^r$ peryodycheskykh funktsyi mnohykh peremennykh, Mat. sb., 197, № 1, 71 – 96 (2006). DOI: https://doi.org/10.4213/sm1496

A. S. Romanyuk, Settings Kolmogorov widths and bilinear approximations of the classes of periodic functions of one and many variables, Ukr. Math. J., 70, № 2, 224 – 235 (2018). DOI: https://doi.org/10.1007/s11253-018-1499-7

A. S. Romanyuk, V. S. Romanyuk, Approximating characteristics of the classes of periodic multivariate functions in the space $B_{∞,1}$, Ukr. Math. J., 71, № 2, 271 – 282 (2019). DOI: https://doi.org/10.1007/s11253-019-01646-3

A. S. Romanyuk, V. S. Romanyuk, Estimates of some approximating characteristics of the classes of periodic functions of one and many variables, Ukr. Math. J., 71, № 8, 1102 – 1115 (2019). DOI: https://doi.org/10.1007/s11253-019-01711-x

A. S. Romanyuk, V. S. Romanyuk, Aproksymatsiini kharakterystyky i vlastyvosti operatoriv naikrashchoho nablyzhennia klasiv funktsii z prostoriv Sobolieva ta Nikolskoho – Biesova, Ukr. Mat. Visn., 17, № 3, 372 – 395 (2020). DOI: https://doi.org/10.37069/1810-3200-2020-17-3-5

A. S. Romanyuk, S. Ya. Yanchenko, Estimates of approximation characteristics and properties of operators of the best approximation for the classes of periodic functions in the space $B_{1,1}$, Ukr. Math. J., 73, № 8, 1102 – 1119 (2021). DOI: https://doi.org/10.1007/s11253-022-01990-x

D. D˜ung, V. N. Temlyakov, T. Ullrich, Hyperbolic cross approximation, Adv. Courses Math., CRM Barselona, Birkh¨auser (2019), https://doi.org/10.1007/978-3-319-92240-9 DOI: https://doi.org/10.1007/978-3-319-92240-9_4

A. S. Romanyuk, Approksymatyvnye kharakterystyky klassov peryodycheskykh funktsyi mnohykh peremennykh , Pratsi In-tu matematyky NAN Ukrainy, 93 (2012).

V. N. Temlyakov, Approximation of periodic function, Nova Sci. Publ., Inc., New York (1993).

B. S. Kashin, A. A. Saakyan, Ортогональные ряды [Orthogonal series], ``Nauka'', Moscow, (1984).

B. S. Kashyn, V. N. Temliakov, Ob odnoi norme y sviazannыkh s nei prylozhenyiakh, Mat. zametky, 64, № 4, 637 – 640 (1998). DOI: https://doi.org/10.4213/mzm1439

B. S. Kashyn, V. N. Temliakov, Ob odnoi norme y aproksymatsyonnykh kharakterystykakh klassov funktsyi mnohykh peremennykh, Metrycheskaia teoryia funktsyi y smezhnye voprosy analyza, AFTs, Moskva (1999), с. 69 – 99.

A. O. Radomskyi, O neekvyvalentnosty C- y QC-norm v prostranstve tryhonometrycheskykh polynomov, Mat. sb., 207, № 12, 1729 – 1742 (2016).

A. O. Radomskyi, Nekotorye tryhonometrycheskye polynomy s ekstremalno maloi ravnomernoi normoi y ykh prylozhenyia, Yzv. RAN. Ser. mat.,84, № 2, 166 – 196 (2020). DOI: https://doi.org/10.4213/im8887

A. N. Kolmohorov, V. M. Tykhomirov, $varepsilon$ -entropyia y $varepsilon$ -emkost mnozhestv v funktsyonalnykh prostranstvakh, Uspekhy mat. nauk, 14, № 2, 3 – 86 (1959).

K. H¨ollig, Diameters of classes of smooth functions, Quant. Approxim., Acad. Press, New York (1980), p. 163 – 176. DOI: https://doi.org/10.1016/B978-0-12-213650-4.50020-9

E. S. Belinskii, Approximation of functions of several variables by trigonometric polinomials with given number of harmonics, and estimates of $epsilon$ -entropy, Anal. Math., 15, 67 – 74 (1989), https://doi.org/10.1007/BF01910941 DOI: https://doi.org/10.1007/BF01910941

E. S. Belinskii, Estimates of entropy numbers and Gaussian measures for classes of functions with bounded mixed derivative, J. Approx. Theory, 93, 114 – 127 (1998), https://doi.org/10.1006/jath.1997.3157 DOI: https://doi.org/10.1006/jath.1997.3157

B. S. Kashyn, V. N. Temliakov, O nayluchshykh $m$-chlennykh pryblyzhenyiakh y entropyy mnozhestv v prostranstve $L_1$ , Mat. zametky, 56, № 5, 57 – 86 (1994).

V. N. Temlyakov, Otsenky asymptotycheskykh kharakterystyk klassov funktsyi s ohranychenoi smeshannoi proyzvodnoi yly raznostiu, Trudy Mat. in-ta AN SSSR, 189, 138 – 168 (1989).

V. N. Temlyakov, An inequality for trigonometric polynomials and its application for estimating the entropy numbers, J. Complexity, 11, 293 – 307 (1995), https://doi.org/10.1006/jcom.1995.1012 DOI: https://doi.org/10.1006/jcom.1995.1012

V. N. Temlyakov, An inequality for the entropy numbers and its application, J. Approx. Theory, 173, P. 110 – 121 (2013), https://doi.org/10.1016/j.jat.2013.05.003 DOI: https://doi.org/10.1016/j.jat.2013.05.003

V. N. Temlyakov, On the entropy numbers of the mixed smoothness function classes, J. Approx. Theory, 217, 26 – 56 (2017), https://doi.org/10.1016/j.jat.2017.02.002 DOI: https://doi.org/10.1016/j.jat.2017.02.002

K. V. Pozhars’ka, Estimates for the entropy numbers of the classes $B^{Ω}_{p,θ}$ of periodic multivariate functions in the uniform metric, Ukr. Math. J., 70, № 9, 1249 – 1263 (2019). DOI: https://doi.org/10.1007/s11253-019-01578-y

V. N. Temlyakov, Multivariate approximation, Cambridge Univ. Press, Cambridge (2018), https://doi.org/10.1017/9781108689687 DOI: https://doi.org/10.1017/9781108689687

R. M. Trigub, E. S. Belinsky, Fourier analysis and approximation of functions, Kluwer Acad. Publ., Dordrecht (2004), https://doi.org/10.1007/978-1-4020-2876-2 DOI: https://doi.org/10.1007/978-1-4020-2876-2

G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Univ. Press, Cambridge (1989), https://doi.org/10.1017/CBO9780511662454 DOI: https://doi.org/10.1017/CBO9780511662454

A. S. Romanyuk, S. Ya. Yanchenko, Estimates for the entropy numbers of the Nikol’skii – Besov classes of periodic functions of many variables in the space of quasi-continuous functions, Math. Nachr. (to appear); arXiv:2103.05919v1.

H. H. Khardy, Dzh. E. Lyttlvud, H. Polya, Neravenstva, Izd-vo inostr. lit., Moskva (1948).

Published
21.02.2022
How to Cite
Romanyuk , A. S., and S. Y. Yanchenko. “Kolmogorov Widths of the Nikol’skii – Besov Classes of Periodic Functions of Many Variables in the Space of Quasi-Continuous Functions”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 2, Feb. 2022, pp. 220 -32, doi:10.37863/umzh.v74i2.6932.
Section
Research articles