On σ-subnormal subgroups of finite 3'-groups
DOI:
https://doi.org/10.37863/umzh.v72i6.1037Abstract
UDC 512.542
For a partition σ of the set R of all primes, it is solved that if every complete Hall set of type σ of a finite 3′-group G is reducible in some subgroup H of G, then H is σ -subnormal in G.
References
O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78, 205 – 221 (1962) https://doi.org/10.1007/BF01195169 DOI: https://doi.org/10.1007/BF01195169
H. Wielandt, Zusammengesetzte Gruppen: Holders Programm heute, Proc. Pure Math., 37, 161 – 173 (1980).
P. B. Kleidman, A proof of the Kegel – Wielandt conjecture on subnormal subgroups, Ann. Math., 133, 369 – 428 (1991) https://doi.org/10.2307/2944342 DOI: https://doi.org/10.2307/2944342
R. Guralnick, P. B. Kleidman, R. Lyons, Sylow p-subgroups and subnormal subgroups of nite groups, Proc. London Math. Soc., 66, No 3, 129 – 151 (1993) https://doi.org/10.1112/plms/s3-66.1.129 DOI: https://doi.org/10.1112/plms/s3-66.1.129
Нерешенные вопросы теории групп: Коуровская тетрадь (Russian) [[Nereshenny`e voprosy` teorii grupp: Kourovskaya tetrad`, ]], In-t matematiki SO RAN, Novosibirsk (2018).
A. N. Skiba, On some results in the theory of nite partially soluble groups, Commun. Math. Stat., 4, No 3, 281 – 309 (2016) https://doi.org/10.1007/s40304-016-0088-z DOI: https://doi.org/10.1007/s40304-016-0088-z
A. N. Skiba, On sigma -subnormal and sigma-permutable subgroups of nite groups, J. Algebra, 436, 1 – 16 (2015) https://doi.org/10.1016/j.jalgebra.2015.04.010 DOI: https://doi.org/10.1016/j.jalgebra.2015.04.010
A. N. Skiba, О sigma -свойствах конечных групп I (Russian) [[O sigma-svojstvakh konechny`kh grupp I ]] , Problemy` fiziki, matematiki i tekhniki, No 4(21), 89–96 (2014).
M. Suzuki, On a class double transitive groups, Ann. Math., 75, No 1, 105 – 145 (1962) https://doi.org/10.2307/1970423 DOI: https://doi.org/10.2307/1970423
K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin; New York (1992) https://doi.org/10.1515/9783110870138 DOI: https://doi.org/10.1515/9783110870138