Unitary subgroups of commutative group algebras of characteristic two

Abstract

UDC 512.552.7

Let $FG$ be the group algebra of a finite $2$-group $G$ over a finite field $F$ of characteristic two and $\circledast$ an involution which arises from $G$. The $\circledast$-unitary subgroup of $FG$, denoted by $V_{\circledast}(FG)$, is defined to be the set of all normalized units $u$ satisfying the property $u^{\circledast}=u^{-1}$. In this paper we establish the order of $V_{\circledast}(FG)$ for all involutions $\circledast$ which arise from $G$, where $G$ is a finite cyclic $2$-group and show that all $\circledast$-unitary subgroups of $FG$ are not isomorphic.

References

Z. Balogh, A. Bovdi, On units of group algebras of 2-groups of maximal class, Commun. Algebra, 32, No 8, 3227 – 3245 (2004). https://doi.org/10.1081/AGB-120039288 DOI: https://doi.org/10.1081/AGB-120039288

Z. Balogh, L. Creedon, J. Gildea, Involutions and unitary subgroups in group algebras, Acta Sci. Math. (Szeged), 79, No 3-4, 391 – 400 (2013).

A. Bovdi, The group of units of a group algebra of characteristic p, Publ. Math. Debrecen, 52, No 1-2, 193–244 (1998).

A. Bovdi, L. Erdei, Unitary units in modular group algebras of groups of order 16, Techn. Rep., Univ. Debrecen, L. Kossuth Univ., 4, No 157, 1 – 16 (1996).

A. Bovdi, L. Erdei, Unitary units in modular group algebras of 2-groups, Commun. Algebra, 28, No 2, 625 – 630 (2000). https://doi.org/10.1080/00927870008826848 DOI: https://doi.org/10.1080/00927870008826848

A. Bovdi, A. Szaka ́cs, Units of commutative group algebra with involution, Publ. Math. Debrecen, 69, No 3, 291 – 296 (2006).

A. A. Bovdi, Unitarity of the multiplicative group of an integral group ring (Russian), Mat. Sb. (N.S.), 119(161), No 3, 387 – 400 (1982).

A. A. Bovdi, A. A. Sakach, The unitary subgroup of the multiplicative group of the modular group algebra of a finite abelian $p$-group. (Russian) ; translated from Mat. Zametki 45 (1989), no. 6, 23--29, 110 Math. Notes 45 (1989), no. 5-6, 445 – 450.

A. A. Bovdi, A. Szaka ́cs, A basis for the unitary subgroup of the group of units in a nite commutative group algebra, Publ. Math. Debrecen, 46 , No 1-2, 97 – 120 (1995).

V. Bovdi, L. G. Kova ́cs, Unitary units in modular group algebras, Manuscripta Math., 84, No 1, 57 – 72 (1994). https://doi.org/10.1007/BF02567443

V. Bovdi, A. L. Rosa, On the order of the unitary subgroup of a modular group algebra, Commun. Algebra, 28, No 4, 1897 – 1905 (2000). https://doi.org/10.1080/00927870008826934 DOI: https://doi.org/10.1080/00927870008826934

V. Bovdi, T. Rozgonyi, Unitary units in modular group algebras, Acta. Acad. Paed. Nyiregyha ́za, 84, No 1, 57–72 (1994) https://doi.org/10.1007/BF02567443 DOI: https://doi.org/10.1007/BF02567443

V. A. Bovdi, A. N. Grishkov, Unitary and symmetric units of a commutative group algebra, Proc. Edinburgh Math. Soc., 62, No 3, 641 – 654 (2019) https://doi.org/10.1017/s0013091518000500 DOI: https://doi.org/10.1017/S0013091518000500

L. Creedon, J. Gildea, Unitary units of the group algebra $F_{2k }Q_{s}$ , Internat. J. Algebra and Comput., 19, No 2, 283 – 286 (2009) https://doi.org/10.1142/S0218196709005081 DOI: https://doi.org/10.1142/S0218196709005081

L. Creedon, J. Gildea, The structure of the unit group of the group algebra $F_{2k }Q_{s}$ , Canad. Math. Bull., 54, No 2, 237 – 243 (2011) https://doi.org/10.4153/CMB-2010-098-5 DOI: https://doi.org/10.4153/CMB-2010-098-5

D. S. Dummit, R. M. Foote, Abstract algebra, John Wiley & Sons, Inc., Hoboken, NJ (2004).

The GAP Group, GAP –– Groups, Algorithms, and Programming, Version 4.10.2 (2019).

K. Ireland, M. Rosen, A classical introduction to modern number theory, Grad. Texts Math., 84, Springer-Verlag, New York (1990). https://doi.org/10.1007/978-1-4757-2103-4 DOI: https://doi.org/10.1007/978-1-4757-2103-4

G. T. Lee, S. K. Sehgal, E. Spinelli, Group rings whose unitary units are nilpotent, J. Algebra, 410, 343 – 354 (2014) https://doi.org/10.1016/j.jalgebra.2014.01.041 DOI: https://doi.org/10.1016/j.jalgebra.2014.01.041

G. T. Lee, S. K. Sehgal, E. Spinelli, Bounded Engel and solvable unitary units in group rings, J. Algebra, 501, 225 – 232 (2018) https://doi.org/10.1016/j.jalgebra.2017.12.021 DOI: https://doi.org/10.1016/j.jalgebra.2017.12.021

N. Makhijani, R. Sharma, J. Srivastava, On the order of unitary subgroup of the modular group algebra $Bbb{F}_{2^k}D_{2N}$, J. Algebra and Appl., 14, No 8, 1550129-1 – 1550129-10 (2015) https://doi.org/10.1142/S0219498815501297 DOI: https://doi.org/10.1142/S0219498815501297

S. P. Novikov, Algebraic construction and properties of Hermitian analogs of $K$-theory over rings with involution from the viewpoint of Hamiltonian formalism. Applications to differential topology and the theory of characteristic classes. I. II. (Russian) ; translated from Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 253--288; ibid. (1970), 475 – 500. Math. USSR-Izv. 4 (1970), 257 – 292 DOI: https://doi.org/10.1070/IM1970v004n02ABEH000903

Published
25.05.2020
How to Cite
Laver, V., and Z. Balogh. “Unitary Subgroups of Commutative Group Algebras of Characteristic Two”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 6, May 2020, pp. 751-7, doi:10.37863/umzh.v72i6.1068.
Section
Research articles