Classical solutions of time-fractional quasilinear reaction-diffusion systems
DOI:
https://doi.org/10.3842/umzh.v77i2.1147Keywords:
Caputo derivative, Holder spaces, classical solutionAbstract
UDC 517.9
We analyze a quasilinear reaction-diffusion system with the time-fractional Caputo derivative. We prove the existence and uniqueness result to initial-boundary problems with Dirichlet and Robin (Neumann) boundary conditions under suitable assumptions on the given data. The existence of the solution to our problem is proved by the Leray–Schauder fixed-point theorem. Positivity property allows us to apply the method of upper-lower solutions. We provide an example of upper and lower solutions to some specific time-fractional reaction-diffusion system.
References
1. M. Abudiab, I. Ahn, L. Li, Upper-lower solutions for nonlinear parabolic systems and their applications, J. Math. Anal. and Appl., 378, 620–633 (2011). DOI: https://doi.org/10.1016/j.jmaa.2011.01.003
2. A. Alsaedi, M. Kirane, R. Lassoued, Global existence and asymptotic behavior for a time fractional reaction-diffusion system, Comput. and Math. Appl., 73, 951–958 (2017). DOI: https://doi.org/10.1016/j.camwa.2016.05.006
3. W. Arendt, A. F. M. ter Elst, J. Glück, Strict positivity for the principal eigenfunction of elliptic operators with various boundary conditions, Adv. Nonlinear Stud., 20, 633–650 (2020). DOI: https://doi.org/10.1515/ans-2020-2091
4. J. Azevedo, C. Cuevas, E. Henriquez, Existence and asymptotic behaviour for the time-fractional Keller–Segel model for chemotaxis, Math. Nachr., 292, 462–480 (2019). DOI: https://doi.org/10.1002/mana.201700237
5. E. Bazhlekova, B. Jin, R. Lazarov, Z. Zhou, An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid, Numer. Math., 131, 1–31 (2015). DOI: https://doi.org/10.1007/s00211-014-0685-2
6. A. Belmiloudi, Cardiac memory phenomenon, time-fractional order nonlinear system and bidomain-torso type model in electrocardiology, AIMS Math., 6, 821–867 (2021). DOI: https://doi.org/10.3934/math.2021050
7. V. S. Belonosov, Estimates of solutions of parabolic systems in weighted Hölder classes and some of their applications, Mat. Sb., 38, 151–173 (1981). DOI: https://doi.org/10.1070/SM1981v038n02ABEH001225
8. B. Berkowitz, J. Klafter, R. Metzler, H. Scher, Physical pictures of transport in heterogeneous media: advection-dispersion random-walk, and fractional derivative formulations, Water Resour. Res., 38, № 10, 1191 (2002). DOI: https://doi.org/10.1029/2001WR001030
9. M. Caputo, W. Plastino, Diffusion in porous layers with memory, Geophys. J. Internat., 158, 385–396 (2004). DOI: https://doi.org/10.1111/j.1365-246X.2004.02290.x
10. K. Diethelm, The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Math., 2004, Springer-Verlag, Berlin (2010). DOI: https://doi.org/10.1007/978-3-642-14574-2
11. A. Friedman, Partial differential equations of parabolic type, Englewood Cliffs, Prentice-Hall, New York (1964).
12. M. Fritz, Ch. Kuttler, M. L. Rajendran, B. Wohlmuth, L. Scarabosio, On a subdiffusive tumour growth model with fractional time derivative, IMA J. Appl. Math., 86, 688–729 (2021). DOI: https://doi.org/10.1093/imamat/hxab009
13. C. G. Gal, M. Warma, Fractional-in-time semilinear parabolic equations and applications, Math. Appl., 84, Springer Nature Switzerland AG (2020). DOI: https://doi.org/10.1007/978-3-030-45043-4_3
14. W. G. Glöckle, T. F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics, Biophys. J., 68, 46–53 (1995). DOI: https://doi.org/10.1016/S0006-3495(95)80157-8
15. R. Hilfer (ed.), Applications of fractional calculus in physics, World Scientific, Singapore (2000). DOI: https://doi.org/10.1142/9789812817747
16. J. Janno, K. Kasemets, Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation, Inverse Probl. and Imaging, 11, № 1, 125–149 (2017). DOI: https://doi.org/10.3934/ipi.2017007
17. A. Kochubei, Yu. Luchko (eds.), Handbook of fractional calculus with applications, vol. 2, Fractional Differential Equations, De Gruyter, Berlin (2019). DOI: https://doi.org/10.1515/9783110571660
18. M. O. Korpusov, A. V. Ovchinnikov, A. A. Panin, Lectures in nonlinear functional analysis, World Scientific Publishing, Hackensack, NJ (2022). DOI: https://doi.org/10.1142/12603
19. T. Kosztołowicz, K. D. Lewandowska, Application of fractional differential equations in modelling the subdiffusion-reaction process, Math. Model. Nat. Phenom., 8, 44-–54 (2013). DOI: https://doi.org/10.1051/mmnp/20138204
20. M. Krasnoshchok, Monotone iterations method for fractional diffusion equations, Mat. Stud., 57, 122–136 (2022). DOI: https://doi.org/10.30970/ms.57.2.122-136
21. M. Krasnoschok, V. Pata, N. Vasylyeva, Semilinear subdiffusion with memory in multidimensional domains, Math. Nachr., 292, 1490–1513 (2019). DOI: https://doi.org/10.1002/mana.201700405
22. M. Krasnoschok, N. Vasylyeva, Linear subdiffusion in weighted fractional Hölder spaces, Evol. Equat. and Control Theory, 11, 1455–1487 (2022). DOI: https://doi.org/10.3934/eect.2021050
23. Y. Luchko, A. Suzuki, M. Yamamoto, On the maximum principle for the multi-term fractional transport equation, J. Math. Anal. and Appl., 505, Article 125579 (2022). DOI: https://doi.org/10.1016/j.jmaa.2021.125579
24. Z. Li, X. Huang, Y. Liu, Initial-boundary value problems for coupled systems of time-fractional diffusion equations, Fract. Calc. and Appl. Anal., 26, 533–566 (2023). DOI: https://doi.org/10.1007/s13540-023-00149-0
25. W. McLean, Regularity of solutions to a time-fractional diffusion equation, ANZIAM J., 52, 123–138 (2010). DOI: https://doi.org/10.1017/S1446181111000617
26. C. Miranda, Partial differential equations of elliptic type, Springer-Verlag, New York, Berlin (1970). DOI: https://doi.org/10.1007/978-3-642-87773-5
27. J. Mu, B. Ahmad, S. Hueng, Existence and regularity of solutions to time-fractional diffusion equations, Comput. Math. Appl., 73, 985–996 (2017). DOI: https://doi.org/10.1016/j.camwa.2016.04.039
28. A. Mund, Ch. Kuttler, J. Pérez-Velázquez, Existence and uniqueness of solutions to a family of semi-linear parabolic systems using coupled upper-lower solutions, Discrete and Contin. Dyn. Syst. Ser. B, 22, 1–13 (2019).
29. C. V. Pao, Nonlinear parabolic and elliptic equations, Springer, New York (1992).
30. B. Perthame, Parabolic equations in biology. Growth, reaction, movement and diffusion, Springer, Cham (2015). DOI: https://doi.org/10.1007/978-3-319-19500-1
31. T. Simon, Comparing Frechet and positive stable laws, Electron. J. Probab., 19, № 16 (2014). DOI: https://doi.org/10.1214/EJP.v19-3058
32. V. A. Solonnikov, A. G. Khachatryan, On the question of the solvability of initial-boundary value problems for quasilinear parabolic systems, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI), 110, 225–234 (1981).
33. H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. and Numer. Simul., 64, 213–231 (2018). DOI: https://doi.org/10.1016/j.cnsns.2018.04.019
34. M. Suzuki, Local existence and nonexistence for fractional in time weakly coupled reaction-diffusion systems, SN Partial Different. Equat. and Appl., 2, Article 2 (2021). DOI: https://doi.org/10.1007/s42985-020-00061-9
35. V. Vergara, R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47, 210–239 (2015). DOI: https://doi.org/10.1137/130941900
36. J. Yang, J. D. M. Rademacher, Reaction-subdiffusion systems and memory: spectra, Turing instability and decay estimates, IMA J. Appl. Math., 86, 247–293 (2021). DOI: https://doi.org/10.1093/imamat/hxaa044
37. R. Zacher, A weak Harnack inequality for fractional evolution equations with discontinuous coefficients, Ann. Sci. Norm. Super. Pisa Cl. Sci. (5), 12, № 4, 903–940 (2013). DOI: https://doi.org/10.2422/2036-2145.201107_008
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Микола Краснощок

This work is licensed under a Creative Commons Attribution 4.0 International License.