Univalence criteria and quasiconformal extension of a general integral operator

Keywords: Univalent function; Quasiconformal mapping; Univalence condition; Integral operator; Loewner chain.

Abstract

UDC 517.5

We give some sufficient conditions of analyticity and univalence for functions defined by an integral operator. Next, we refine the result to a quasiconformal extension criterion with the help of the Becker’s method. Further, new univalence criteria and the significant relationships with other results are given. A number of known univalence conditions would follow upon specializing the parameters involved in main results.

 

References

L. V. Ahlfors, Sufficient conditions for quasiconformal extension, Ann. Math. Stud., 79, 23 – 29 (1974). DOI: https://doi.org/10.1515/9781400881642-004

J. M. Anderson, A. Hinkkanen, Univalence criteria and quasiconformal extensions, Trans. Amer. Math. Soc., 324, № 2, 823 – 842 (1991); https://doi.org/10.2307/2001743 DOI: https://doi.org/10.1090/S0002-9947-1991-0994162-4

J. Becker, L¨ownersche Differential gleichung und quasikonform fortsetzbare schlichte Funktionen, J. reine angew. und Math., 255, 23 – 43 (1972); https://doi.org/10.1515/crll.1972.255.23 DOI: https://doi.org/10.1515/crll.1972.255.23

J. Becker, Über die Lösungsstruktur einer Differentialgleichung in der konformen Abbildung (German) , J. reine und angew. Math., 285, 66 – 74 (1976); https://doi.org/10.1515/crll.1976.285.66 DOI: https://doi.org/10.1515/crll.1976.285.66

J. Becker, Conformal mappings with quasiconformal extensions, Aspects of Contemporary Complex Analysis, Acad.Press (1980), p. 37 – 77.

Th. Betker, L¨oewner chains and quasiconformal extensions, Complex Var. Theory and Appl., 20, № 1- 4, 107 – 111 (1992); https://doi.org/10.1080/17476939208814591 DOI: https://doi.org/10.1080/17476939208814591

M. Çağlar, H. Orhan, Sufficient conditions for univalence and quasiconformal extensions, Indian J. Pure and Appl. Math., 46, № 1, 41 – 50 (2015); https://doi.org/10.1007/s13226-015-0106-y DOI: https://doi.org/10.1007/s13226-015-0106-y

E. Deniz, H. Orhan, Some notes on extensions of basic univalence criteria, J. Korean Math. Soc., 48, № 1, 179 – 189 (2011); https://doi.org/10.4134/JKMS.2011.48.1.179 DOI: https://doi.org/10.4134/JKMS.2011.48.1.179

E. Deniz, H. Orhan, Loewner chains and univalence criteria related with Ruscheweyh and Sгlгgean derivatives, J. Appl. Anal. and Comput., 5, № 3, 465 – 478 (2015); https://doi.org/10.1007/s40435-015-0212-z DOI: https://doi.org/10.11948/2015036

V. Ya. Gutljanskiĭ, The stratification of the class of univalent analytic functions, Dokl. Akad. Nauk SSSR, 196, 498 – 501 (1971); Engl. transl.: Soviet Math. Dokl., 12, 155 – 159 (1971).

V. Ya. Gutljanskiĭ, V. I. Ryazanov, Geometric and topological theory of functions and mappings, Naukova Dumka, Kyiv (2011).

I. Hotta, L¨owner chains with complex leading coefficient, Monatsh. Math., 163, № 3, 315 – 325 (2011); https://doi.org/10.1007/s00605-010-0200-5 DOI: https://doi.org/10.1007/s00605-010-0200-5

I. Hotta, Explicit quasiconformal extensions and L¨oewner chains, Proc. Japan Acad. Ser. A. Math. Sci., 85, № 8, 108 – 111 (2009); https://doi.org/10.3792/pjaa.85.108 DOI: https://doi.org/10.3792/pjaa.85.108

S. Kanas, A. Lecko, Univalence criteria connected with arithmetic and geometric means, I, Folia Sci. Univ. Tech. Resov., 20, 49 – 59 (1996).

S. Kanas, A. Lecko, Univalence criteria connected with arithmetic and geometric means, II, Proc. Second Int. Workshop of Transform Methods and Special Functions, Varna’96, Bulgar. Acad. Sci (Sofia), p. 201 – 209 (1996). DOI: https://doi.org/10.1080/17476939608814851

B. A. Klishchuk, R. R. Salimov, Lower bounds for the area of the image of a circle, Ufa Math. J., 9, № 2, 55 – 61 (2017); https://doi.org/10.13108/2017-9-2-55 DOI: https://doi.org/10.13108/2017-9-2-55

J. G. Krz´yz, Convolution and quasiconformal extension, Comment. Math. Helv., 51, № 1,

– 104 (1976), https://doi.org/10.1007/BF02568145 DOI: https://doi.org/10.1007/BF02568145

Z. Lewandowski, On a univalence criterion, Bull. Acad. Polon. Sci. Ser. Sci. Math., 29, № 3-4, 123 – 126 (1981).

P. T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme. (French), Stud. Univ. Babe¸s-Bolyai Math., 11(34), 127 – 133 (1969).

S. Moldoveanu, N. N. Pascu, A new generalization of Becker’s univalence criterion (I), Stud. Univ. Babes-Bolyai Math., 31(54), № 2, 153 – 157 (1989).

S. Moldoveanu, N. N. Pascu, Integral operators which preserve the univalence, Stud. Univ. Babes-Bolyai Math., 32 (55), № 2, 159 – 166 (1990).

P. Montel, Families normales de fonctions analytiques, Gauthier-Villars, Paris (1927).

H. Ovesea, A generalization of Ruscheweyh’s univalence criterion, J. Math. Anal. amd Appl., 258, № 1, 102 – 109 (2001); https://doi.org/10.1006/jmaa.2000.7362 DOI: https://doi.org/10.1006/jmaa.2000.7362

N. N. Pascu, On a univalence criterion, II, Itinerant seminar on functional equations approximation and convexity, Cluj-Napoca, 153--154, Preprint, 85-6, Univ. "Babeş-Bolyai'', (1985).

V. Pescar, A new generalization of Ahlfor’s and Becker’s criterion of univalence, Bull. Malays. Math. Sci. Soc., 19, № 2, 53 – 54 (1996).

J. A. Pfaltzgraff, $k$-quasiconformal extension criteria in the disk, Complex Var. Theory and Appl., 21, № 3-4, 293 – 301 (1993), https://doi.org/10.1080/17476939308814638 DOI: https://doi.org/10.1080/17476939308814638

Ch. Pommerenke, Über die Subordination analytischer Funktionen, J. reine und angew. Math., 218, 159 – 173 (1965); https://doi.org/10.1515/crll.1965.218.159 DOI: https://doi.org/10.1515/crll.1965.218.159

Ch. Pommerenke, Univalent functions, Vandenhoeck Ruprecht in G¨ottingen, 376 pp., 1975.

D. Raducanu, H. Orhan, E. Deniz, On some sufficient conditions for univalence, An. Ştiinţ. Univ. "Ovidius'' Constanţa Ser. Mat., 18, № 2, 217 – 222 (2010).

S. Ruscheweyh, An extension of Becker’s univalence condition, Math. Ann., 220, № 3, 285 – 290 (1976); https://doi.org/10.1007/BF01431098 DOI: https://doi.org/10.1007/BF01431098

E. A. Sevost’yanov, S. A. Skvortsov, On the convergence of mappings in metric spaces with direct and inverse modulus conditions, Ukr. Math. J., 70, № 7, 1097 – 1114 (2018). DOI: https://doi.org/10.1007/s11253-018-1554-4

E. Sevost’yanov, A. Markysh, On Sokhotski – Casorati –Weierstrass theorem on metric spaces, Complex Var. and Elliptic Equat., 64, № 12, 1973 – 1993 (2019), https://doi.org/10.1080/17476933.2018.1557155 DOI: https://doi.org/10.1080/17476933.2018.1557155

V. Singh, P. N. Chichra, An extension of Becker’s criterion for univalence, J. Indian Math. Soc., 41, № 3-4, 353 – 361 (1977).

H. M. Srivastava, S. Owa (Editors), Current topics in analytic function theory, World Sci. Publ. Co., Singapore ect. (1992); https://doi.org/10.1142/1628 DOI: https://doi.org/10.1142/1628

Published
24.01.2022
How to Cite
Deniz, E., S. Kanas, and H. Orhan. “Univalence Criteria and Quasiconformal Extension of a General Integral Operator”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 1, Jan. 2022, pp. 24 -35, doi:10.37863/umzh.v74i1.1148.
Section
Research articles