On one estimate of divided differences and its applications

Authors

  • K. A. Kopotun
  • D. Leviatan Tel Aviv Univ., Israel
  • I. A. Shevchuk

Abstract

We give an estimate of the general divided differences $[x_0, ..., x_m; f]$, where some points xi are allowed to coalesce (in this case, $f$ is assumed to be sufficiently smooth). This estimate is then applied to significantly strengthen the celebrated Whitney and Marchaud inequalities and their generalization to the Hermite interpolation. For example, one of the numerous corollaries of this estimate is the fact that, given a function $f \in C(r)(I)$ and a set $Z = \{ z_j\}^{\mu}_{j=0}$ such that $z_{j+1} - z_j \geq \lambda | I|$ for all $0 \leq j \leq \mu 1$, where $I := [z_0, z_{\mu} ], | I|$ is the length of $I$, and $\lambda$ is a positive number, the Hermite polynomial $\scrL (\cdot ; f;Z)$ of degree $\leq r\mu + \mu + r$ satisfying the equality $\scrL (j)(z\nu ; f;Z) = f(j)(z\nu )$ for all $0 \leq \nu \leq \mu$ and $0 \leq j \leq r$ approximates $f$ so that, for all $x \in I$, $$| f(x) \scr L (x; f;Z)| \leq C (\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t} (x,Z))^{r+1} \int^{2| I|}_{dist (x,Z)}\frac{\omega_{m-r}(f^{(r)}, t, I)}{t^2}dt,$$ where $m := (r + 1)(\mu + 1), C = C(m, \lambda )$ and $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t} (x,Z) := \mathrm{m}\mathrm{i}\mathrm{n}0\leq j\leq \mu | x zj | $.

Downloads

Published

25.02.2019

Issue

Section

Research articles

How to Cite

Kopotun, K. A., et al. “On One Estimate of Divided Differences and Its Applications”. Ukrains’kyi Matematychnyi Zhurnal, vol. 71, no. 2, Feb. 2019, pp. 230-45, https://umj.imath.kiev.ua/index.php/umj/article/view/1434.