Indecomposable and isomorphic objects in the category of monomial matrices over a local ring

  • V. M. Bondarenko Ин-т математики НАН Украины, Киев
  • M. Yu. Bortos


We study the indecomposability and isomorphism of objects from the category of monomial matrices $\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{t}(K)$ over a commutative local principal ideal ring $K$ (whose objects are square monomial matrices and the morphisms from $X$ to $Y$ are the matrices $C$ such that $XC = CY$). We also study the subcategory $\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{t}_0(K)$ of the category $\mathrm{M}\mathrm{m}\mathrm{a}\mathrm{t}(K)$ with the same objects and only those morphisms that are monomial matrices.
How to Cite
Bondarenko, V. M., and M. Y. Bortos. “Indecomposable and Isomorphic Objects in the Category of monomial Matrices over a Local Ring”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, no. 7, July 2017, pp. 889-04,
Research articles