Exact solutions of the nonliear equation $u_{tt} = = a(t) uu_{xx} + b(t) u_x^2 + c(t) u $

  • T. A. Barannyk
  • A. F. Barannyk
  • I. I. Yuryk Нац. ун-т харч, технологій, Київ


Ans¨atzes that reduce the equation$u_{tt} = = a(t) uu_{xx} + b(t) u_x^2 + c(t) u $ to a system of two ordinary differential equations are defined. Also it is shown that the problem of constructing exact solutions of the form $u = \mu 1(t)x_2 + \mu 2(t)x\alpha , \alpha \in \bfR$, to this equation, reduces to integrating of a system of linear equations $\mu \prime \prime 1 = \Phi 1(t)\mu 1, \mu \prime \prime 2 = \Phi 2(t)\mu 2$, where $\Phi 1(t)$ and \Phi 2(t) are arbitrary predefined functions.
How to Cite
Barannyk, T. A., A. F. Barannyk, and I. I. Yuryk. “Exact Solutions of the Nonliear Equation $u_{tt} = = a(t) uu_{xx} + b(t) u_x^2 + c(t) U $”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, no. 9, Sept. 2017, pp. 1180-6, https://umj.imath.kiev.ua/index.php/umj/article/view/1768.
Research articles