Category of some subalgebras of the Toeplitz algebra

Authors

  • K. H. Hovsepyan Ijevan Branch of Yerevan State University

DOI:

https://doi.org/10.37863/umzh.v73i12.191

Keywords:

C ∗ -algebras, the Toeplitz algebra, category of tuples with integers, functor, net bundles of C ∗ -algebras

Abstract

UDC 517.9

We consider structure analysis of subalgebras of the Toeplitz algebra, which are generated by inverse subsemigroups of bicyclic semigroup. A category of sets of natural numbers of length k<m is constructed, and each set is matched by some C-algebra. The result is a category of C -algebras. The existence of a functor between these categories has been proved. In particular, we find the conditions, under which the category of C-algebras turns into a bundle of C -algebras.

References

B. B. Barnes, Representation of the l1 -algebra of an inverse semigroup, Trans. Amer. Math. Soc., 218, 361 – 396 (1976); https://doi.org/10.2307/1997447 DOI: https://doi.org/10.1090/S0002-9947-1976-0397310-4

L. L. Coburn, The C -algebra generated by an isometry, Bull. Amer. Math. Soc., 73, 722 – 726 (1967); https://doi.org/10.1090/S0002-9904-1967-11845-7 DOI: https://doi.org/10.1090/S0002-9904-1967-11845-7

S. S. Jang, Uniqueness property of C -algebras like the Toeplitz algebras, Trends Math., 6, 29 – 32 (2003).

R. R. Douglas, On the C -algebra of a one-parameter semigroup of isometries, Acta Math., 128, № 3-4, 143 – 152 (1972); https://doi.org/10.1007/BF02392163 DOI: https://doi.org/10.1007/BF02392163

M. M. Aukhadiev, V. V. Tepoyan, Isometric representations of totally ordered semigroups, Lobachevskii J. Math., 33, № 3, 239 – 243 (2012); https://doi.org/10.1134/S1995080212030031 DOI: https://doi.org/10.1134/S1995080212030031

G. G. Murphy, Crossed products of C-algebras by semigroups of automorphisms, Proc. London Math. Soc., 68, № 2, 423 – 448 (1994); https://doi.org/10.1112/plms/s3-68.2.423 DOI: https://doi.org/10.1112/plms/s3-68.2.423

Dzh. Merfy, C-alhebra y teoryia operatorov, Faktoryal, Moskva (1997).

K. K. Davidson, C -algebras by example, Fields Institute Monograph 6, AMS (1996); https://doi.org/10.1090/fim/006 DOI: https://doi.org/10.1090/fim/006

R. R. Douglas, Banach algebra techniques in operator theory, 2nd ed., Grad. Texts in Math., Vol. 179 (1998); https://doi.org/10.1007/978-1-4612-1656-8 DOI: https://doi.org/10.1007/978-1-4612-1656-8

S. S. Hryhorian, A. A. Salakhutdynov, C -alhebry, porozhdennye poluhruppamy s sokrashchenyem, Syb. mat. zhurn., 51, № 1, 16 – 25 (2010).

K. K. Hovsepyan, O C -alhebrakh, porozhdennykh ynversnymy podpoluhruppamy bytsyklycheskoi poluhruppy, Yzv. NAN Armenyy, matematyka, 49, № 5, 67 – 75 (2014).

E. E. Lypacheva, K. K. Hovsepyan, Struktura podalhebr alhebry Teplytsa, nepodvyzhnykh otnosytelno konechnoi hruppy avtomorfyzmov, Yzv. vuzov. Matematyka, № 6, 14 – 23 (2015).

T. T. Hryhorian, K. K. Hovsepyan,, Struktura y sviaz podalhebr alhebrY Teplytsa Tm y T(m), Vest. KHEU, 19, № 4, 31 – 36 (2013).

K. K. Hovsepyan, E. E. Lipacheva, The structure of invariant ideals of some subalgebras of Toeplitz algebra, J. Contemp. Math. Anal., 50, № 2, 70 – 79 (2015); https://doi.org/10.3103/s106836231502003x DOI: https://doi.org/10.3103/S106836231502003X

K. K. Hovsepyan, The C -algebra Tm as a crossed product, Proc. Yerevan State Univ., Phys. and Math. Sci., № 3, 24 – 30 (2014).

E. E. Lypacheva, K. K. Ovsepian, AvtomorfyzmY nekotorYkh podalhebr alhebrY Teplytsa, Syb. mat. zhurn., 57, № 3, 666 – 674 (2016).

Published

17.12.2021

Issue

Section

Research articles

How to Cite

Hovsepyan, K. H. “Category of Some Subalgebras of the Toeplitz Algebra”. Ukrains’kyi Matematychnyi Zhurnal, vol. 73, no. 12, Dec. 2021, pp. 1638-46, https://doi.org/10.37863/umzh.v73i12.191.