Category of some subalgebras of the Toeplitz algebra
DOI:
https://doi.org/10.37863/umzh.v73i12.191Keywords:
C ∗ -algebras, the Toeplitz algebra, category of tuples with integers, functor, net bundles of C ∗ -algebrasAbstract
UDC 517.9
We consider structure analysis of subalgebras of the Toeplitz algebra, which are generated by inverse subsemigroups of bicyclic semigroup. A category of sets of natural numbers of length k<m is constructed, and each set is matched by some C∗-algebra. The result is a category of C∗ -algebras. The existence of a functor between these categories has been proved. In particular, we find the conditions, under which the category of C∗-algebras turns into a bundle of C∗ -algebras.
References
B. B. Barnes, Representation of the l1 -algebra of an inverse semigroup, Trans. Amer. Math. Soc., 218, 361 – 396 (1976); https://doi.org/10.2307/1997447 DOI: https://doi.org/10.1090/S0002-9947-1976-0397310-4
L. L. Coburn, The C∗ -algebra generated by an isometry, Bull. Amer. Math. Soc., 73, 722 – 726 (1967); https://doi.org/10.1090/S0002-9904-1967-11845-7 DOI: https://doi.org/10.1090/S0002-9904-1967-11845-7
S. S. Jang, Uniqueness property of C∗ -algebras like the Toeplitz algebras, Trends Math., 6, 29 – 32 (2003).
R. R. Douglas, On the C∗ -algebra of a one-parameter semigroup of isometries, Acta Math., 128, № 3-4, 143 – 152 (1972); https://doi.org/10.1007/BF02392163 DOI: https://doi.org/10.1007/BF02392163
M. M. Aukhadiev, V. V. Tepoyan, Isometric representations of totally ordered semigroups, Lobachevskii J. Math., 33, № 3, 239 – 243 (2012); https://doi.org/10.1134/S1995080212030031 DOI: https://doi.org/10.1134/S1995080212030031
G. G. Murphy, Crossed products of C∗-algebras by semigroups of automorphisms, Proc. London Math. Soc., 68, № 2, 423 – 448 (1994); https://doi.org/10.1112/plms/s3-68.2.423 DOI: https://doi.org/10.1112/plms/s3-68.2.423
Dzh. Merfy, C∗-alhebra y teoryia operatorov, Faktoryal, Moskva (1997).
K. K. Davidson, C∗ -algebras by example, Fields Institute Monograph 6, AMS (1996); https://doi.org/10.1090/fim/006 DOI: https://doi.org/10.1090/fim/006
R. R. Douglas, Banach algebra techniques in operator theory, 2nd ed., Grad. Texts in Math., Vol. 179 (1998); https://doi.org/10.1007/978-1-4612-1656-8 DOI: https://doi.org/10.1007/978-1-4612-1656-8
S. S. Hryhorian, A. A. Salakhutdynov, C∗ -alhebry, porozhdennye poluhruppamy s sokrashchenyem, Syb. mat. zhurn., 51, № 1, 16 – 25 (2010).
K. K. Hovsepyan, O C∗ -alhebrakh, porozhdennykh ynversnymy podpoluhruppamy bytsyklycheskoi poluhruppy, Yzv. NAN Armenyy, matematyka, 49, № 5, 67 – 75 (2014).
E. E. Lypacheva, K. K. Hovsepyan, Struktura podalhebr alhebry Teplytsa, nepodvyzhnykh otnosytelno konechnoi hruppy avtomorfyzmov, Yzv. vuzov. Matematyka, № 6, 14 – 23 (2015).
T. T. Hryhorian, K. K. Hovsepyan,, Struktura y sviaz podalhebr alhebrY Teplytsa Tm y T(m), Vest. KHEU, 19, № 4, 31 – 36 (2013).
K. K. Hovsepyan, E. E. Lipacheva, The structure of invariant ideals of some subalgebras of Toeplitz algebra, J. Contemp. Math. Anal., 50, № 2, 70 – 79 (2015); https://doi.org/10.3103/s106836231502003x DOI: https://doi.org/10.3103/S106836231502003X
K. K. Hovsepyan, The C∗ -algebra Tm as a crossed product, Proc. Yerevan State Univ., Phys. and Math. Sci., № 3, 24 – 30 (2014).
E. E. Lypacheva, K. K. Ovsepian, AvtomorfyzmY nekotorYkh podalhebr alhebrY Teplytsa, Syb. mat. zhurn., 57, № 3, 666 – 674 (2016).