On One Convolution Equation in the Theory of Filtration of Random Processes

Authors

  • A. G. Barsegyan
  • N. B. Engibaryan

Abstract

We study the problems of analytic theory and the numerical-analytic solution of the integral convolution equation of the second kind $$ \begin{array}{cc}\hfill {\varepsilon}^2f(x)+{\displaystyle \underset{0}{\overset{r}{\int }}K\left(x-t\right)f(t)dt=g(x),}\hfill & \hfill x\in \left[0,r\right)\hfill \end{array}, $$ where $$ \begin{array}{cccc}\hfill \varepsilon >0,\hfill & \hfill r\le \infty, \hfill & \hfill K\in {L}_1\left(-\infty, \infty \right),\hfill & \hfill K(x)={\displaystyle \underset{a}{\overset{b}{\int }}{e}^{-\left|x\right|s}d\sigma (s)\ge 0.}\hfill \end{array} $$ The factorization approach is used and developed. The key role in this approach is played by the V. Ambartsumyan nonlinear equation.

Published

25.08.2014

Issue

Section

Research articles

How to Cite

Barsegyan, A. G., and N. B. Engibaryan. “On One Convolution Equation in the Theory of Filtration of Random Processes”. Ukrains’kyi Matematychnyi Zhurnal, vol. 66, no. 8, Aug. 2014, pp. 1092–1105, https://umj.imath.kiev.ua/index.php/umj/article/view/2201.