Embeddings into countably compact Hausdorff spaces
Abstract
UDC 515.122
We consider the problem of characterization of topological spaces embedded into countably compact Hausdorff topological spaces. We study the separation axioms for subspaces of Hausdorff countably compact topological spaces and construct an example of a regular separable scattered topological space that cannot be embedded into a Urysohn countably compact topological space.
References
T. Banakh, On $κ$-bounded and $M$-compact reflections of topological spaces, Topology and Appl., 289, Article 107547 (2021). DOI: https://doi.org/10.1016/j.topol.2020.107547
T. Banakh, S. Bardyla, A. Ravsky, Embedding topological spaces into Hausdorff $kappa$-bounded spaces, Topology and Appl., 280, Article 107277 (2020). DOI: https://doi.org/10.1016/j.topol.2020.107277
T. Banakh, J. Mioduszewski, S. Turek, On continuous self-maps and homeomorphisms of the Golomb space, Comment. Math. Univ. Carolin., 59, № 4, 423–442 (2018). DOI: https://doi.org/10.14712/1213-7243.2015.269
S. Bardyla, Embedding of regular spaces in countably compact Hausdorff spaces, Lviv Scottish Book; https://math-overflow.net/q/339657/61536.
E. K. van Douwen, The integers and topology, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam (1984), p. 111–167. DOI: https://doi.org/10.1016/B978-0-444-86580-9.50006-9
R. Engelking, General topology, Heldermann Verlag, Berlin (1989).
S. García-Ferreira, Lj. Kočinac, Convergence with respect to ultrafilters: a survey, Filomat, № 10, 1–32 (1996).
I. Juhász, J. van Mill, W. Weiss, Variations on $w$-boundedness, Israel J. Math., 194, № 2, 745–766 (2013). DOI: https://doi.org/10.1007/s11856-012-0062-8
I. Juhász, S. Shelah, L. Soukup, More on countably compact, locally countable spaces, Israel J. Math., 62, № 3, 302–310 (1988). DOI: https://doi.org/10.1007/BF02783299
I. Juhász, J. Vaughan, Countably compact hyperspaces and Frolík sums, Topology and Appl., 154, № 12, 2434–2448 (2007). DOI: https://doi.org/10.1016/j.topol.2007.03.011
P. Nyikos, First countable, countably compact, noncompact spaces, Open Problems in Topology II, Elsevier (2007), p. 217–224. DOI: https://doi.org/10.1016/B978-044452208-5/50025-9
J. Vaughan, Countably compact and sequentially compact spaces, Handbook of Set-Theoretic Topology, Elsevier (1984), p. 569–602. DOI: https://doi.org/10.1016/B978-0-444-86580-9.50015-X
Copyright (c) 2023 Serhii Bardyla
This work is licensed under a Creative Commons Attribution 4.0 International License.