Paley – Wiener type theorem for functions with values in Banach spaces

Keywords: Real Paley-Wiener theorem, Beurling spectrum, Generalized functions, Banach spaces


UDC 517.5

Let $(\mathbb{X},\|.\|_{\mathbb{X}})$ denote a complex Banach space and $L(\mathbb{X})=BC (\mathbb{R}\to\mathbb{X})$ be the set of all $\mathbb{X}$-valued bounded continuous functions $f\colon\mathbb{R}\to\mathbb{X}.$
For $f\in L(\mathbb{X})$ we define $\|f\|_{L(\mathbb{X})}=\sup\{ \|f(x)\|_{\mathbb{X}}\colon x\in\mathbb{R}\}.$ Then $(L(\mathbb{X}),\|.\|_{L(\mathbb{X})})$ itself is a Banach space. The Beurling spectrum $\mathrm{Spec}(f)$ of a function $f\in L(\mathbb{X})$ is defined by
\forall\epsilon>0\ \exists\varphi\in\mathcal{S}
\varphi*f\not\equiv 0\right\}.
We obtain the following Paley-Wiener type theorem for functions with values in Banach spaces:

Let $f\in L(\mathbb{X})$ and $K$ be an arbitrary compact set in $\mathbb{R}.$ Then $\mbox{Spec}(f)\subset K$ if and only if for any $\tau > 0$ there exists a constant $C_\tau < \infty$ such that
\|P(D)f\|_{L(\mathbb{X})}\leq C_\tau
\|f\|_{L(\mathbb{X})}\sup\limits_{x\in K^{(\tau)}} |P(x)|
for all polynomials with complex coefficients $P(x),$ where the differential operator $P(D)$ is obtained from $P(x)$ by substituting $x \to -i\,\dfrac{d}{dx},$ $\dfrac{d}{dx}$ is the usual derivative in $L(\mathbb{X})$ and $K^{(\tau)}$ is the $\tau$-neighborhood in $\mathbb{C}$ of $K.$

Moreover, Paley-Wiener type theorem for integral operators and one for some special compacts $K$ are also given.


L. D. Abreu, F. Bouzeffour, A Paley – Wiener theorem for the Askey – Wilson function transform, Proc. Amer. Math. Soc., 138, 2853 – 2862 (2010),

J. Arthur, A Paley – Wiener theorem for real reductive groups, Acta Math., 150, 1 – 89 (1983),

J. Arthur, On a family of distributions obtained from Eisenstein series. I. Application of the Paley – Wiener theorem, Amer. J. Math., 104, 1243 – 1288 (1982),

E. P. van den Ban, H. Schlichtkrull, A Paley – Wiener theorem for reductive symmetric spaces, Ann. Math., 164, 879 – 909 (2006),

H. H. Bang, Theorems of the Paley – Wiener – Schwartz type, Trudy Mat. Inst. Steklov, 214, 298 – 319 (1996).

H. H. Bang, Nonconvex cases of the Paley – Wiener – Schwartz theorems, Dokl. Akad. Nauk, 354, 165 – 168 (1997).

H. H. Bang, V. N. Huy, The Paley – Wiener theorem in the language of Taylor expansion coefficients, Dokl. Akad. Nauk, 446, 497 – 500 (2012),

H. H. Bang, V. N. Huy, Paley – Wiener theorem for functions in $L_p(R^n)$, Integral Transforms Spec. Funct., 27, № 9, 715 – 730 (2016),

H. H. Bang, V. N. Huy, A study of the sequence of norm of derivatives (or primitives) of functions depending on their Beurling spectrum, Vietnam J. Math., 44, 419 – 429 (2016),

S. N. Bernstein, Collected works, vol. 1 (in Russian), Akad. Nauk SSSR, Moscow (1952).

O. Christensen, A Paley – Wiener theorem for frames, Proc. Amer. Math. Soc., 123, 2199 – 2202 (1995),

M. de Jeu, Paley – Wiener theorems for the Dunkl transform, Trans. Amer. Math. Soc., 358, 4225 – 4250 (2006),

L. Hormander, A new generalization of an inequality of Bohr, Math. Scand., 2, 33 – 45 (1954),

A. Yu. Khrennikov, H. Petersson, A Paley – Wiener theorem for generalized entire functions on infinite-dimensional spaces, Izv. RAN. Ser. Mat., 65, 201 – 224 (2001),

N. V. Minh, A new approach to the spectral theory and Loomis – Arendt – Batty – Vu theory, J. Different. Equat., 247, 1249 – 1274 (2009),

R. Paley, N. Wiener, Fourier transform in the complex domain, Amer. Math. Soc. Colloq. Publ., 19 (1934),

L. Schwartz, Transformation de Laplace des distributions, Comm. Sem. Math. Univ. Lund., 196 – 206 (1952).

How to Cite
Bang, H. H., and V. N. Huy. “Paley – Wiener Type Theorem for Functions With Values in Banach Spaces”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 6, July 2022, pp. 731 -42, doi:10.37863/umzh.v74i6.2382.
Research articles