Paley – Wiener type theorem for functions with values in Banach spaces
DOI:
https://doi.org/10.37863/umzh.v74i6.2382Keywords:
Real Paley-Wiener theorem, Beurling spectrum, Generalized functions, Banach spacesAbstract
UDC 517.5
Let (X,‖.‖X) denote a complex Banach space and L(X)=BC(R→X) be the set of all X-valued bounded continuous functions f:R→X.
For f∈L(X) we define ‖f‖L(X)=sup{‖f(x)‖X:x∈R}. Then (L(X),‖.‖L(X)) itself is a Banach space. The Beurling spectrum Spec(f) of a function f∈L(X) is defined by
\mathrm{Spec}(f)=\left\{\zeta\in\mathbb{R}\colon\forall\epsilon>0 \exists \varphi\in\mathcal{S}(\mathbb{R})\colon\mbox{supp}\,\widehat{\varphi}\subset(\zeta-\epsilon,\zeta+\epsilon),\varphi*f\nequiv 0\right\}.\right\}. We obtain the following Paley-Wiener type theorem for functions with values in Banach spaces:
Let f∈L(X) and K be an arbitrary compact set in R. Then Spec(f)⊂K if and only if for any τ>0 there exists a constant Cτ<∞ such that
‖P(D)f‖L(X)≤Cτ‖f‖L(X)supx∈K(τ)|P(x)|
for all polynomials with complex coefficients P(x), where the differential operator P(D) is obtained from P(x) by substituting x→−iddx, ddx is the usual derivative in L(X) and K(τ) is the τ-neighborhood in C of K.
Moreover, Paley-Wiener type theorem for integral operators and one for some special compacts K are also given.
References
L. D. Abreu, F. Bouzeffour, A Paley – Wiener theorem for the Askey – Wilson function transform, Proc. Amer. Math. Soc., 138, 2853 – 2862 (2010), https://doi.org/10.1090/S0002-9939-10-10327-X DOI: https://doi.org/10.1090/S0002-9939-10-10327-X
J. Arthur, A Paley – Wiener theorem for real reductive groups, Acta Math., 150, 1 – 89 (1983), https://doi.org/10.1007/BF02392967 DOI: https://doi.org/10.1007/BF02392967
J. Arthur, On a family of distributions obtained from Eisenstein series. I. Application of the Paley – Wiener theorem, Amer. J. Math., 104, 1243 – 1288 (1982), https://doi.org/10.2307/2374061 DOI: https://doi.org/10.2307/2374061
E. P. van den Ban, H. Schlichtkrull, A Paley – Wiener theorem for reductive symmetric spaces, Ann. Math., 164, 879 – 909 (2006), https://doi.org/10.4007/annals.2006.164.879 DOI: https://doi.org/10.4007/annals.2006.164.879
H. H. Bang, Theorems of the Paley – Wiener – Schwartz type, Trudy Mat. Inst. Steklov, 214, 298 – 319 (1996).
H. H. Bang, Nonconvex cases of the Paley – Wiener – Schwartz theorems, Dokl. Akad. Nauk, 354, 165 – 168 (1997).
H. H. Bang, V. N. Huy, The Paley – Wiener theorem in the language of Taylor expansion coefficients, Dokl. Akad. Nauk, 446, 497 – 500 (2012), https://doi.org/10.1134/s1064562412050237 DOI: https://doi.org/10.1134/S1064562412050237
H. H. Bang, V. N. Huy, Paley – Wiener theorem for functions in Lp(Rn), Integral Transforms Spec. Funct., 27, № 9, 715 – 730 (2016), https://doi.org/10.1080/10652469.2016.1190964 DOI: https://doi.org/10.1080/10652469.2016.1190964
H. H. Bang, V. N. Huy, A study of the sequence of norm of derivatives (or primitives) of functions depending on their Beurling spectrum, Vietnam J. Math., 44, 419 – 429 (2016), https://doi.org/10.1007/s10013-015-0146-y DOI: https://doi.org/10.1007/s10013-015-0146-y
S. N. Bernstein, Collected works, vol. 1 (in Russian), Akad. Nauk SSSR, Moscow (1952).
O. Christensen, A Paley – Wiener theorem for frames, Proc. Amer. Math. Soc., 123, 2199 – 2202 (1995), https://doi.org/10.2307/2160957 DOI: https://doi.org/10.1090/S0002-9939-1995-1246520-X
M. de Jeu, Paley – Wiener theorems for the Dunkl transform, Trans. Amer. Math. Soc., 358, 4225 – 4250 (2006), https://doi.org/10.1090/S0002-9947-06-03960-2 DOI: https://doi.org/10.1090/S0002-9947-06-03960-2
L. Hormander, A new generalization of an inequality of Bohr, Math. Scand., 2, 33 – 45 (1954), https://doi.org/10.7146/math.scand.a-10392 DOI: https://doi.org/10.7146/math.scand.a-10392
A. Yu. Khrennikov, H. Petersson, A Paley – Wiener theorem for generalized entire functions on infinite-dimensional spaces, Izv. RAN. Ser. Mat., 65, 201 – 224 (2001), https://doi.org/10.1070/im2001v065n02ABEH000332 DOI: https://doi.org/10.1070/IM2001v065n02ABEH000332
N. V. Minh, A new approach to the spectral theory and Loomis – Arendt – Batty – Vu theory, J. Different. Equat., 247, 1249 – 1274 (2009), https://doi.org/10.1016/j.jde.2009.03.030 DOI: https://doi.org/10.1016/j.jde.2009.03.030
R. Paley, N. Wiener, Fourier transform in the complex domain, Amer. Math. Soc. Colloq. Publ., 19 (1934), https://doi.org/10.1090/coll/019 DOI: https://doi.org/10.1090/coll/019
L. Schwartz, Transformation de Laplace des distributions, Comm. Sem. Math. Univ. Lund., 196 – 206 (1952).