Inverse spectral problem for a star graph of Stieltjes strings with prescribed numbers of masses on the edges

Keywords: spectrum, graph, Neuman condition

Abstract

UDC 519.177

Consider a spectral problem for a star graph of Stieltjes strings. At the central vertex the generalized Neumann conditions are imposed. All but one (called the root) pendant vertices of the graph are clamped. We consider two problems:

(i) with the Neumann condition at the root (the Neumann problem),

(ii) with the Dirichlet condition at the root (the Dirichlet problem). In [V. Pivovarchik, N. Rozhenko, C. Tretter, Dirichlet – Neumann inverse spectral problem for a star graph of Stieltjes strings, Linear Algebra and Appl., 439, № 8, 2263 – 2292 (2013)], the spectra of such problems were described and the corresponding inverse problem of recovering the values of masses and lengths of the intervals between them was solved by using the spectra of the two (Neumann and Dirichlet) problems. In the present paper, in contrast to the results mentioned
above we solve the inverse problem where the number of point masses on the edges is prescribed. We find necessary and sufficient conditions guaranteeing that two sequences of real numbers are the spectra of the Dirichlet and Neumann problems for a star graph with prescribed numbers of masses on the edges and prescribed lengths of edges.

References

O. Boyko, O. Martynyuk, V. Pivovarchik, On maximal multiplicity of eigenvalues of finite-dimensional spectral problem on a graph, Methods Funct. Anal. and Topology, 25, № 2, 104 – 117 (2019).

O. Boyko, V. Pivovarchik, Inverse spectral problem for a star graph of Stieltjes strings, Methods Funct. Anal. and Topology, 14, № 2, 159 – 167 (2008).

J. Genin, J. S. Maybee, Mechanical vibrations trees, J. Math. Anal. and Appl., 45, 746 – 763 (1974), https://doi.org/10.1016/0022-247X(74)90065-1 DOI: https://doi.org/10.1016/0022-247X(74)90065-1

G. Gladwell, Inverse problems in vibration, Kluwer Acad. Publ., Dordrecht (2004). DOI: https://doi.org/10.1007/1-4020-2721-4

G. Gladwell, A. Morass, Matrix inverse eigenvalue problems, Dynamical Inverse Problems: Theory and Appl., 529, 1 – 29 (2011), https://doi.org/10.1007/978-3-7091-0696-9_1 DOI: https://doi.org/10.1007/978-3-7091-0696-9_1

F. R. Gantmakher, M. G. Krein, Oscillating matrices and kernels and vibrations of mechanical systems (in Russian), GITTL, Moscow, Leningrad (1950); English transl. Revised ed., AMS Chelsea Publ., Providence, RI, (2002), https://doi.org/10.1090/chel/345

V. A. Marchenko, Vvedenie v teoriyu obratny`kh zadach spektral`nogo analiza, Akta, Kharkiv (2005).

A. Marshall, I. Olkin, B. Arnold, Inequalities: Theory of Majorization and Its Applications, Second Ed., Springer, New York (2011), https://doi.org/10.1007/978-0-387-68276-1 DOI: https://doi.org/10.1007/978-0-387-68276-1

M. Möller, V. Pivovarchik, Damped star graphs of Stieltjes strings, Proc. Amer. Math. Soc., 145, № 4, 1717 – 1728 (2017), https://doi.org/10.1090/proc/13367 DOI: https://doi.org/10.1090/proc/13367

M. Moller, V. Pivovarchik, ¨ Direct and inverse finite-dimensional spectral problems on graphs, Operator Theory: Adv. and Appl., 283 (2020). DOI: https://doi.org/10.1007/978-3-030-60484-4

R. F. Muirhead, Some methods applicable to identities and inequalities of symmetric algebraic functions of $n$ letters, Proc. Edinburgh Math. Soc., 21, 144 – 157 (1903). DOI: https://doi.org/10.1017/S001309150003460X

V. Pivovarchik, N. Rozhenko, C. Tretter, Dirichlet – Neumann inverse spectral problem for a star graph of Stieltjes strings, Linear Algebra and Appl., 439, № 8, 2263 – 2292 (2013), https://doi.org/10.1016/j.laa.2013.07.003 DOI: https://doi.org/10.1016/j.laa.2013.07.003

V. Pivovarchik, C. Tretter, Location and multiplicities of eigenvalues for a star graph of Stieltjes strings, J. Difference Equat. and Appl., 21, № 5, 383 – 402 (2015), https://doi.org/10.1080/10236198.2014.992425 DOI: https://doi.org/10.1080/10236198.2014.992425

V. Pivovarchik, Pro minimal`nu kil`kist` riznikh vlasnikh znachen` u zadachi na derevi zi stil`t`yesivs`kikh strun, Ukr. mat. zhurn., 72, № 1, 135 – 141 (2020).

L. Yang, G. Wei, V. Pivovarchik, Direct and inverse spectral problems for a star graph of Stieltjes strings damped at a pendant vertex, Inverse Problems and Imaging (2020)., https://doi.org/10.3934/ipi.2020063 DOI: https://doi.org/10.3934/ipi.2020063

Published
20.01.2021
How to Cite
PivovarchikV., and DudkoA. “Inverse Spectral Problem for a Star Graph of Stieltjes Strings With Prescribed Numbers of Masses on the Edges”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 1, Jan. 2021, pp. 47 -60, doi:10.37863/umzh.v73i1.2398.
Section
Research articles