On modules over group rings of nilpotent groups

Authors

  • O. Yu. Dashkova Днепропетр. нац. ун-т

Abstract

We study an $\mathbf{R}G$-module $A$, where $\mathbf{R}$ is a ring, $A/C_A(G)$ is not a minimax $\mathbf{R}$-module, $C_A(G) = 1$, and $G$ is a nilpotent group. Let $\mathfrak{L}_{nm}(G)$ be the system of all subgroups $H \leq G$ such that the quotient modules $A/C_A(G)$ are not minimax $\mathbf{R}$-modules. We investigate a $\mathbf{R}G$ - module $A$ such that $\mathfrak{L}_{nm}(G)$ satisfies either the weak minimal condition or the weak maximal condition as an ordered set. It is proved that a nilpotent group $G$ that satisfies these conditions is a minimax group.

Published

25.01.2012

Issue

Section

Research articles

How to Cite

Dashkova, O. Yu. “On Modules over Group Rings of Nilpotent Groups”. Ukrains’kyi Matematychnyi Zhurnal, vol. 64, no. 1, Jan. 2012, pp. 13-23, https://umj.imath.kiev.ua/index.php/umj/article/view/2552.