Inverse Jackson theorems in spaces with integral metric

Authors

  • S. A. Pichugov Днепропетр. нац. ун-т ж.-д. трансп.

Abstract

In the spaces $L_{\Psi}(T)$ of periodic functions with metric $\rho(f, 0)_{\Psi} = \int_T \Psi(|f(x)|)dx$, where $\Psi$ is a function of the modulus-of-continuity type, we investigate the inverse Jackson theorems in the case of approximation by trigonometric polynomials. It is proved that the inverse Jackson theorem is true if and only if the lower dilation exponent of the function $\Psi$ is not equal to zero.

Published

25.03.2012

Issue

Section

Research articles

How to Cite

Pichugov, S. A. “Inverse Jackson Theorems in Spaces With Integral Metric”. Ukrains’kyi Matematychnyi Zhurnal, vol. 64, no. 3, Mar. 2012, pp. 351-62, https://umj.imath.kiev.ua/index.php/umj/article/view/2581.