Convergence of solutions of stochastic differential equations to the Arratia flow

Authors

  • T. V. Malovichko

Abstract

We consider the solution $x_{\varepsilon}$ of the equation $$dx_{\varepsilon}(u,t) = \int\limits_\mathbb{R}\varphi_{\varepsilon}(x_{\varepsilon}(u,t) - r) W(dr,dt), $$ $$x_{\varepsilon}(u,0) = u,$$ where $W$ is a Wiener sheet on $\mathbb{R} \times [0; 1].$ For the case where $\varphi_{\varepsilon}^2$ converges to $p \delta(\cdot - a_1) + q \delta(\cdot - a_2),$ i.e., where a boundary function describing the influence of a random medium is singular more than at one point, we prove that the weak convergence of $\left(x_{\varepsilon}(u_1, \cdot),...,x_{\varepsilon}(u_d, \cdot) \right)$ to $\left(X(u_1, \cdot),...,X(u_d, \cdot) \right)$ takes place as $\varepsilon\rightarrow0_+$ (here, $X$ is the Arratia flow).

Published

25.11.2008

Issue

Section

Research articles

How to Cite

Malovichko, T. V. “Convergence of Solutions of Stochastic Differential Equations to the Arratia Flow”. Ukrains’kyi Matematychnyi Zhurnal, vol. 60, no. 11, Nov. 2008, pp. 1529–1538, https://umj.imath.kiev.ua/index.php/umj/article/view/3266.