On estimate for numerical radius of some contractions

Authors

  • M. T. Karaev

Abstract

For the numerical radius of an arbitrary nilpotent operator T on a Hilbert space H, Haagerup and de la Harpe proved the inequality \(w(T) \leqslant \left\| T \right\|cos\frac{\pi }{{n + 1}}\), where $n \geq 2$ is the nilpotency order of the operator T. In the present paper, we prove a Haagerup-de la Harpe-type inequality for the numerical radius of contractions from more general classes.

Published

25.10.2006

Issue

Section

Research articles

How to Cite

Karaev, M. T. “On Estimate for Numerical Radius of Some Contractions”. Ukrains’kyi Matematychnyi Zhurnal, vol. 58, no. 10, Oct. 2006, pp. 1335–1339, https://umj.imath.kiev.ua/index.php/umj/article/view/3536.