On estimate for numerical radius of some contractions
Abstract
For the numerical radius of an arbitrary nilpotent operator T on a Hilbert space H, Haagerup and de la Harpe proved the inequality \(w(T) \leqslant \left\| T \right\|cos\frac{\pi }{{n + 1}}\), where $n \geq 2$ is the nilpotency order of the operator T. In the present paper, we prove a Haagerup-de la Harpe-type inequality for the numerical radius of contractions from more general classes.
Published
25.10.2006
How to Cite
KaraevM. T. “On Estimate for Numerical Radius of Some Contractions”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, no. 10, Oct. 2006, pp. 1335–1339, https://umj.imath.kiev.ua/index.php/umj/article/view/3536.
Issue
Section
Research articles