On one extremal problem for numerical series

Authors

  • E. I. Radzievskaya
  • G. V. Radzievskii

Abstract

Let $Γ$ be the set of all permutations of the natural series and let $α = \{α_j\}_{j ∈ ℕ},\; ν = \{ν_j\}_{j ∈ ℕ}$, and $η = {η_j}_{j ∈ ℕ}$ be nonnegative number sequences for which $$\left\| {\nu (\alpha \eta )_\gamma } \right\|_1 : = \sum\limits_{j = 1}^\infty {v _j \alpha _{\gamma (_j )} } \eta _{\gamma (_j )}$$ is defined for all $γ:= \{γ(j)\}_{j ∈ ℕ} ∈ Γ$ and $η ∈ l_p$. We find $\sup _{\eta :\left\| \eta \right\|_p = 1} \inf _{\gamma \in \Gamma } \left\| {\nu (\alpha \eta )_\gamma } \right\|_1$ in the case where $1 < p < ∞$.

Published

25.10.2005

Issue

Section

Short communications

How to Cite

Radzievskaya, E. I., and G. V. Radzievskii. “On One Extremal Problem for Numerical Series”. Ukrains’kyi Matematychnyi Zhurnal, vol. 57, no. 10, Oct. 2005, pp. 1430–1434, https://umj.imath.kiev.ua/index.php/umj/article/view/3698.