On one extremal problem for numerical series
Abstract
Let $Γ$ be the set of all permutations of the natural series and let $α = \{α_j\}_{j ∈ ℕ},\; ν = \{ν_j\}_{j ∈ ℕ}$, and $η = {η_j}_{j ∈ ℕ}$ be nonnegative number sequences for which $$\left\| {\nu (\alpha \eta )_\gamma } \right\|_1 : = \sum\limits_{j = 1}^\infty {v _j \alpha _{\gamma (_j )} } \eta _{\gamma (_j )}$$ is defined for all $γ:= \{γ(j)\}_{j ∈ ℕ} ∈ Γ$ and $η ∈ l_p$. We find $\sup _{\eta :\left\| \eta \right\|_p = 1} \inf _{\gamma \in \Gamma } \left\| {\nu (\alpha \eta )_\gamma } \right\|_1$ in the case where $1 < p < ∞$.
Published
25.10.2005
How to Cite
RadzievskayaE. I., and RadzievskiiG. V. “On One Extremal Problem for Numerical Series”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 57, no. 10, Oct. 2005, pp. 1430–1434, https://umj.imath.kiev.ua/index.php/umj/article/view/3698.
Issue
Section
Short communications