On one extremal problem for numerical series
Abstract
Let $Γ$ be the set of all permutations of the natural series and let $α = \{α_j\}_{j ∈ ℕ},\; ν = \{ν_j\}_{j ∈ ℕ}$, and $η = {η_j}_{j ∈ ℕ}$ be nonnegative number sequences for which $$\left\| {\nu (\alpha \eta )_\gamma } \right\|_1 : = \sum\limits_{j = 1}^\infty {v _j \alpha _{\gamma (_j )} } \eta _{\gamma (_j )}$$ is defined for all $γ:= \{γ(j)\}_{j ∈ ℕ} ∈ Γ$ and $η ∈ l_p$. We find $\sup _{\eta :\left\| \eta \right\|_p = 1} \inf _{\gamma \in \Gamma } \left\| {\nu (\alpha \eta )_\gamma } \right\|_1$ in the case where $1 < p < ∞$.Downloads
Published
25.10.2005
Issue
Section
Short communications
How to Cite
Radzievskaya, E. I., and G. V. Radzievskii. “On One Extremal Problem for Numerical Series”. Ukrains’kyi Matematychnyi Zhurnal, vol. 57, no. 10, Oct. 2005, pp. 1430–1434, https://umj.imath.kiev.ua/index.php/umj/article/view/3698.