On the relation between fourier and leont’ev coefficients with respect to smirnov spaces

  • B. Forster


Yu. Mel’nik showed that the Leont’ev coefficients Κ f (λ) in the Dirichlet series \({{2n} \mathord{\left/ {\vphantom {{2n} {\left( {n + 1} \right) < p < 2}}} \right. \kern-0em} {\left( {n + 1} \right) < p > 2}}\) of a function fE p (D), 1 < p < ∞, are the Fourier coefficients of some function FL p , ([0, 2π]) and that the first modulus of continuity of F can be estimated by the first moduli and majorants in f. In the present paper, we extend his results to moduli of arbitrary order.
How to Cite
Forster, B. “On the Relation Between Fourier and leont’ev Coefficients With Respect to Smirnov Spaces”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 56, no. 4, Apr. 2004, pp. 517–526, https://umj.imath.kiev.ua/index.php/umj/article/view/3773.
Research articles