Separately $Fσ$-measurable functions are close to functions of the first baire class

  • T. O. Banakh
  • M. I. Vovk


We prove that a Borel separately $Fσ$-measurable function $f: X \times Y → R$ on the product of Polish spaces is a function of the first Baire class on the complement $X × Y \backslash M$ of a certain projectively meager set $M ⊂ X × Y$.
How to Cite
Banakh, T. O., and M. I. Vovk. “Separately $Fσ$-Measurable Functions Are Close to Functions of the First Baire Class”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 56, no. 4, Apr. 2004, pp. 573–576,
Short communications