Kolmogorov-Type Inequalities for Periodic Functions Whose First Derivatives Have Bounded Variation
Abstract
We obtain a new unimprovable Kolmogorov-type inequality for differentiable 2π-periodic functions x with bounded variation of the derivative x′, namely $$\left\| {x'} \right\|_q \leqslant K\left( {q,p} \right)\left\| x \right\|_p^a \left( {\mathop V\limits_{0}^{{2\pi }} \left( {x'} \right)} \right)^{1 - {alpha }} ,$$ where q ∈ (0, ∞), p ∈ [1, ∞], and α = min{1/2, p/q(p + 1)}.
Published
25.05.2002
How to Cite
BabenkoV. F., KofanovV. A., and PichugovS. A. “Kolmogorov-Type Inequalities for Periodic Functions Whose First Derivatives Have Bounded Variation”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 54, no. 5, May 2002, pp. 603-9, https://umj.imath.kiev.ua/index.php/umj/article/view/4098.
Issue
Section
Research articles