Asymptotic Behavior of Solutions of the Cauchy Problem <em class="a-plus-plus">x</em>′ = <em class="a-plus-plus">f</em>(<em class="a-plus-plus">t</em>, <em class="a-plus-plus">x</em>, <em class="a-plus-plus">x</em>′), <em class="a-plus-plus">x</em>(0) = 0
Abstract
We prove the existence of continuously differentiable solutions \(x:(0,{\rho ]} \to \mathbb{R}^n\) such that $$\left\| {x\left( t \right) - {\xi }\left( t \right)} \right\| = O\left( {{\eta }\left( t \right)} \right),{ }\left\| {x'\left( t \right) - {\xi '}\left( t \right)} \right\| = O\left( {{\eta }\left( t \right)/t} \right),{ }t \to + 0$$ or $$\left\| {x\left( t \right) - S_N \left( t \right)} \right\| = O\left( {t^{N + 1} } \right),{ }\left\| {x'\left( t \right) - S'_N \left( t \right)} \right\| = O\left( {t^N } \right),{ }t \to + 0,$$ where $${\xi }:\left( {0,{\tau }} \right) \to \mathbb{R}^n ,{ \eta }:\left( {0,{\tau }} \right) \to \left( {0, + \infty } \right),{ }\left\| {{\xi }\left( t \right)} \right\| = o\left( 1 \right),$$ $${\eta }\left( t \right) = o\left( t \right),{ \eta }\left( t \right) = o\left( {\left\| {{\xi }\left( t \right)} \right\|} \right),{ }t \to + 0,{ }S_N \left( t \right) = \sum\limits_{k = 2}^N {c_k t^k ,}$$ $$c_k \in \mathbb{R}^n ,k \in \left\{ {2,...,N} \right\},{ }0 < {\rho } < {\tau },{ \rho is sufficiently small}{.}$$
Published
25.12.2002
How to Cite
ZernovA. E., and KuzinaY. V. “Asymptotic Behavior of Solutions of the Cauchy Problem <em class="a-Plus-plus">x</em>′ = <em class="a-Plus-plus">f</em>(<em class="a-Plus-plus">t</em>, <em class="a-Plus-plus">x</em>, <em class="a-Plus-plus">x</em>′), <em class="a-Plus-plus">x</Em>(0) = 0”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 54, no. 12, Dec. 2002, pp. 1698-03, https://umj.imath.kiev.ua/index.php/umj/article/view/4209.
Issue
Section
Short communications