Approximation of $\overline \psi$-Integrals of Periodic Functions by de la Vallée-Poussin Sums (Low Smoothness)

  • V. I. Rukasov
  • S. O. Chaichenko Слов'ян. пед. ун-т


We investigate the asymptotic behavior of the upper bounds of deviations of linear means of Fourier series from the classes $C_{\infty} ^{\psi}$. In particular, we obtain asymptotic equalities that give a solution of the Kolmogorov – Nikol'skii problem for the de la Vallée-Poussin sums on the classes $C_{\infty} ^{\psi}$.
How to Cite
Rukasov, V. I., and S. O. Chaichenko. “Approximation of $\overline \psi$-Integrals of Periodic Functions by De La Vallée-Poussin Sums (Low Smoothness)”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 53, no. 12, Dec. 2001, pp. 1641-53,
Research articles