Approximation of $\overline \psi$-Integrals of Periodic Functions by de la Vallée-Poussin Sums (Low Smoothness)
Abstract
We investigate the asymptotic behavior of the upper bounds of deviations of linear means of Fourier series from the classes $C_{\infty} ^{\psi}$. In particular, we obtain asymptotic equalities that give a solution of the Kolmogorov – Nikol'skii problem for the de la Vallée-Poussin sums on the classes $C_{\infty} ^{\psi}$.
Published
25.12.2001
How to Cite
RukasovV. I., and ChaichenkoS. O. “Approximation of $\overline \psi$-Integrals of Periodic Functions by De La Vallée-Poussin Sums (Low Smoothness)”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 53, no. 12, Dec. 2001, pp. 1641-53, https://umj.imath.kiev.ua/index.php/umj/article/view/4384.
Issue
Section
Research articles