Weighted Lebesgue and central Morrey estimates for $p$-adic multilinear Hausdorff operators and its commutators

  • N. M. Chuong Inst. Math., Vietnam. Acad. Sci. and Technology, Hanoi, Vietnam
  • D. V. Duong School Math., Mientrung Univ. Civil Engineering, Phuyen, Vietnam
  • K. H. Dung Van Lang Univ., Ho Chi Minh City, Vietnam
Keywords: Multilinear Hausdorff operator, commutator, central BMO space, Morrey space, $A_p$ weight, maximal operator, $p$-adic analysis


UDC 517.9

We establish the sharp boundedness of $p$-adic multilinear Hausdorff operators on the product of Lebesgue and central Morrey spaces associated with both power weights and Muckenhoupt weights. Moreover, the boundedness for the commutators of $p$-adic multilinear Hausdorff operators on the such spaces with symbols in central BMO space is also obtained.

Author Biography

K. H. Dung, Van Lang Univ., Ho Chi Minh City, Vietnam


S. Albeverio, A. Yu. Khrennikov, V. M. Shelkovich, Harmonic analysis in the p-adic Lizorkin spaces: fractional operators, pseudo-differential equations, $p$-wavelets, Tauberian theorems, J. Fourier Anal. and Appl., 12, № 4, 393 – 425 (2006), https://doi.org/10.1007/s00041-006-6014-0 DOI: https://doi.org/10.1007/s00041-006-6014-0

A. V. Avetisov, A. H. Bikulov, S. V. Kozyrev, V. A. Osipov, $p$-adic models of ultrametric diffusion constrained by hierarchical energy landscapes, J. Phys. A: Math. Gen., 35, 177 – 189 (2002), https://doi.org/10.1088/0305-4470/35/2/301 DOI: https://doi.org/10.1088/0305-4470/35/2/301

A. V. Avetisov, A. H. Bikulov, V. A. Osipov, $p$-adic description of characteristic relaxation in complex systems, J. Phys. A: Math. Gen., 36, 4239 – 4246 (2003), https://doi.org/10.1088/0305-4470/36/15/301 DOI: https://doi.org/10.1088/0305-4470/36/15/301

N. M. Chuong, Yu. V. Egorov, A. Yu. Khrennikov, Y. Meyer, D. Mumford, Harmonic, wavelet and $p$-adic analysis, World Sci. (2007), https://doi.org/10.1142/9789812770707 DOI: https://doi.org/10.1142/6373

N. M. Chuong, D. V. Duong, Weighted Hardy – Littlewood operators and commutators on $p$-adic functional spaces, $p$-Adic numbers, Ultrametric Anal. and Appl., 5, №. 1, 65 – 82 (2013), https://doi.org/10.1134/S2070046613010044 DOI: https://doi.org/10.1134/S2070046613010044

N. M. Chuong, D. V. Duong, The $p$-adic weighted Hardy – Ces`aro operators on weighted Morrey – Herz space ,p Adic numbers, Ultrametric Anal. and Appl., 8, No 3, 204 – 216 (2016), https://doi.org/10.1134/S207004661603002X DOI: https://doi.org/10.1134/S207004661603002X

N. M. Chuong, D. V. Duong, K. H. Dung, Multilinear Hausdorff operators on some function spaces with variable exponent, (2017), arxiv.org/abs/1709.08185.

N. M. Chuong, N. V. Co, The Cauchy problem for a class of pseudo-differential equations over $p$-adic field, J. Math. Anal. and Appl., 340, № 1, 629 – 643 (2008), https://doi.org/10.1016/j.jmaa.2007.09.001 DOI: https://doi.org/10.1016/j.jmaa.2007.09.001

N. M. Chuong, H. D. Hung, Maximal functions and weighted norm inequalities on local fields, Appl. and Comput. Harmon. Anal., 29, 272 – 286 (2010), https://doi.org/10.1016/j.acha.2009.11.002 DOI: https://doi.org/10.1016/j.acha.2009.11.002

B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, On $p$-adic mathematical physics, p Adic numbers, Ultrametric Anal. and Appl., 1, No 1, 1 – 17 (2009), https://doi.org/10.1134/S2070046609010014 DOI: https://doi.org/10.1134/S2070046609010014

M. Dyachenko, E. Nursultanov, S. Tikhonov, Hardy – Littlewood and Pitt’s inequalities for Hausdorff operators, Bull. Sci. Math., 147, 40 – 57 (2018), https://doi.org/10.1016/j.bulsci.2018.06.003 DOI: https://doi.org/10.1016/j.bulsci.2018.06.003

L. Grafakos, Modern Fourier analysis, Second Ed., Springer (2008), https://doi.org/10.1007/978-0-387-09434-2 DOI: https://doi.org/10.1007/978-0-387-09434-2

F. Hausdorff, Summation Methoden und Momentfolgen, I. Math. Z., 9, 74 – 109 (1921), https://doi.org/10.1007/BF01378337 DOI: https://doi.org/10.1007/BF01378337

H. D. Hung, The $p$-adic weighted Hardy-Ces`aro operator and an application to discrete Hardy inequalities, J. Math. Anal. and Appl., 409, 868 – 879 (2014), https://doi.org/10.1016/j.jmaa.2013.07.056 DOI: https://doi.org/10.1016/j.jmaa.2013.07.056

W. A. Hurwitz, L. L. Silverman, The consistency and equivalence of certain definitions of summabilities, Trans. Amer. Math. Soc., 18, 1 – 20 (1917), https://doi.org/10.2307/1988924 DOI: https://doi.org/10.1090/S0002-9947-1917-1501058-2

T. Hyt¨onen, C. P´erez, E. Rela, Sharp reverse H¨older property for $A_{infty}$ weights on spaces of homogeneous type, J. Funct. Anal., 263, 3883 – 3899 (2012), https://doi.org/10.1016/j.jfa.2012.09.013 DOI: https://doi.org/10.1016/j.jfa.2012.09.013

S. Indratno, D. Maldonado, S. Silwal, A visual formalism for weights satisfying reverse inequalities, Expo. Math., 33, 1 – 29 (2015), https://doi.org/10.1016/j.exmath.2013.12.008 DOI: https://doi.org/10.1016/j.exmath.2013.12.008

S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math., 101, 697 – 703 (1990), https://doi.org/10.1007/BF01231521 DOI: https://doi.org/10.1007/BF01231521

S. Haran, Analytic potential theory over the $p$-adics, Ann. Inst. Fourier (Grenoble)., 43, № 4, 905 – 944 (1993), http://www.numdam.org/item?id=AIF_1993__43_4_905_0 DOI: https://doi.org/10.5802/aif.1361

A. Yu. Khrennikov, $p$-adic valued distributions in mathematical physics, Kluwer Acad. Publ., Dordrecht etc. (1994), https://doi.org/10.1007/978-94-015-8356-5 DOI: https://doi.org/10.1007/978-94-015-8356-5

A. N. Kochubei, Pseudo-differential equations and stochastics over non-archimedean fields, Marcel Dekker, New York (2001), https://doi.org/10.1201/9780203908167 DOI: https://doi.org/10.4324/9780429207914

S. V. Kozyrev, Methods and applications of ultrametric and $p$-adic analysis: from wavelet theory to biophysics, Proc. Steklov Inst. Math., 274, 1 – 84 (2011). DOI: https://doi.org/10.1134/S0081543811070017

S. Lu, Y. Ding, D. Yan, Singular integrals and related topics, World Sci. Publ., Com., Singapore (2007). DOI: https://doi.org/10.1142/6428

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165, 207 – 226 (1972), https://doi.org/10.2307/1995882 DOI: https://doi.org/10.1090/S0002-9947-1972-0293384-6

J. Ruan, D. Fan, Q. Wu, Weighted Herz space estimates for Hausdorff operators on the Heisenberg group, Banach J. Math. Anal., 11, 513 – 535 (2017), https://doi.org/10.1215/17358787-2017-0004 DOI: https://doi.org/10.1215/17358787-2017-0004

K. S. Rim, J. Lee, Estimates of weighted Hardy – Littlewood averages on the $p$-adic vector space, J. Math. Anal. and Appl., 324, № 2, 1470 – 1477 (2006), https://doi.org/10.1016/j.jmaa.2006.01.038 DOI: https://doi.org/10.1016/j.jmaa.2006.01.038

E. M. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press (1993). DOI: https://doi.org/10.1515/9781400883929

V. S. Varadarajan, Path integrals for a class of $p$-adic Schr¨odinger equations, Lett. Math. Phys., 39, 97 – 106 (1997), https://doi.org/10.1023/A:1007364631796 DOI: https://doi.org/10.1023/A:1007364631796

V. S. Vladimirov, Tables of integrals of complex-valued functions of $p$-adic arguments, Proc. Steklov Inst. Math., 284, 1 – 59 (2014). DOI: https://doi.org/10.1134/S0081543814030018

V. S. Vladimirov, I. V. Volovich, $p$-Adic quantum mechanics, Commum. Math. Phys., 123, 659 – 676 (1989). DOI: https://doi.org/10.1007/BF01218590

V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adic analysis and mathematical physis, World Sci. (1994). DOI: https://doi.org/10.1142/1581

S. S. Volosivets, Multidimensional Hausdorff operator on $p$-adic field, $p$-Adic numbers, Ultrametric Anal. and Appl., 2, 252 – 259 (2010), https://doi.org/10.1134/S2070046610030076 DOI: https://doi.org/10.1134/S2070046610030076

S. S. Volosivets, Hausdorff operators on $p$-adic linear spaces and their properties in Hardy, BMO, and H¨older spaces, Mathematical Notes., 3, 382 – 391 (2013), https://doi.org/10.1134/S0001434613030048 DOI: https://doi.org/10.1134/S0001434613030048

How to Cite
Chuong, N. M., D. V. Duong, and K. H. Dung. “Weighted Lebesgue and Central Morrey Estimates for $p$-Adic Multilinear Hausdorff Operators and Its Commutators”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 7, July 2021, pp. 979 - 1004, doi:10.37863/umzh.v73i7.441.
Research articles