Ricci soliton biharmonic hypersurfaces in the Euclidean space
Abstract
UDC 515.12
We investigate biharmonic Ricci soliton hypersurfaces $(M^n, g,\xi, \lambda)$ whose potential field $\xi$ satisfies certain conditions.
We obtain a result based on the average scalar curvature of the compact Ricci soliton hypersurface $M^n$ where $\xi$ is a general vector field.
Then we prove that there are no proper biharmonic Ricci soliton hypersurfaces in the Euclidean space $E^{n+1}$ provided that the potential field $\xi$ is either a principal vector in grad $H^\perp$ or $\xi=\dfrac{{ \rm{ grad } \,} H}{|{ \rm{ grad } \,} H|}$.
References
R. Caddeo, S. Montaldo, C. Oniciuce, Biharmonic submanifold of $S^3$, Internat. J. Math., 12, 867 – 876 (2001), https://doi.org/10.1142/S0129167X01001027 DOI: https://doi.org/10.1142/S0129167X01001027
B. Y. Chen, Total mean curvature and submanifolds of finite type, World Sci., New Jersey (2014). DOI: https://doi.org/10.1142/9237
B. Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17, № 2, 169 – 188 (1991).
B. Y. Chen, S. Deshmukh, Classification of Ricci solitons on Euclidean hypersurfaces, Internat. J. Math., 25, № 11, (2014), https://doi.org/10.1142/S0129167X14501043 DOI: https://doi.org/10.1142/S0129167X14501043
S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 55(103), № 1, 41 – 50 (2012).
I. Dimittric, Submanifolds of Em with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sin., (N.S.), 20, 53 – 65 (1992).
J. Eells, L. Lemaire, Selected topics in harmonic maps, Proc. CBMS Regional Conf. Ser. in Math., Providence, RI, USA, 32, December 1983, https://doi.org/10.1090/cbms/050 DOI: https://doi.org/10.1090/cbms/050
Yu Fu, Biharmonic hypersurface with three distinct principle curvatures in Euclidean 5-space, J. Geom. and Phys., 75, 113 – 119 (2014), https://doi.org/10.1016/j.geomphys.2013.09.004 DOI: https://doi.org/10.1016/j.geomphys.2013.09.004
T. Hasanis, T. Vluchos, Hypersurfaces in $E^4$ with harmonic mean curvature vector field, Math. Nachr., 172, 145 – 169 (1995), https://doi.org/10.1002/mana.19951720112 DOI: https://doi.org/10.1002/mana.19951720112
N. Mosadegh, E. Abedi, Hopf biharmonic hypersurfaces in space forms, Submit.
S. Maeta, $K$-harmonic maps into Rimannian manifold with constant sectional curvature, Proc. Amer. Math. Soc., 140, 1635 – 1847 (2012), https://doi.org/10.1090/S0002-9939-2011-11049-9 DOI: https://doi.org/10.1090/S0002-9939-2011-11049-9
Copyright (c) 2021 Esmaiel Abedi, Mohammad Ilmakchi
This work is licensed under a Creative Commons Attribution 4.0 International License.