Another proof for the continuity of the Lipsman mapping

Authors

  • A. Messaoud
  • A. Rahali Univ. Sfax, Tunisia

DOI:

https://doi.org/10.37863/umzh.v72i7.548

Keywords:

Lie groups, semidirect product, unitary representations, coadjoint orbits, symplectic induction

Abstract

UDC 515.1

We consider the semidirect product G=KV where K is a connected compact Lie group acting by automorphisms on a finite dimensional real vector space V equipped with an inner product ,. By ˆG we denote the unitary dual of G and by g/G the space of admissible coadjoint orbits, where g is the Lie algebra of G. It was pointed out by Lipsman that the correspondence between ˆG and g/G is bijective. Under some assumption on G, we give another proof for the continuity of the orbit mapping (Lipsman mapping)
Θ:g/GˆG.

References

D. Arnal, M. Ben Ammar, M. Selmi, Le problème de la réduction à un sous-groupe dans la quantification par déformation, Ann. Fac. Sci. Toulouse Math. (5), 12, 7 – 27 (1991), http://www.numdam.org/item?id=AFST_1991_5_12_1_7_0 DOI: https://doi.org/10.5802/afst.716

W. Baggett, A description of the topology on the dual spaces of certain locally compact groups, Trans. Amer. Math. Soc., 132, 175 – 215 (1968), https://doi.org/10.2307/1994889 DOI: https://doi.org/10.2307/1994889

P. Baguis, Semidirect product and the Pukanszky condition, J. Geom. and Phys., 25, 245 – 270 (1998), https://doi.org/10.1016/S0393-0440(97)00028-4 DOI: https://doi.org/10.1016/S0393-0440(97)00028-4

M. Ben Halima, A. Rahali, On the dual topology of a class of Cartan motion groups, J. Lie Theory, 22, 491 – 503 (2012)

M. Elloumi and J. Ludwig, Dual topology of the motion groups SO(n)×Rn, Forum Math., 22, no. 2, 397 – 410 (2008), https://doi.org/10.1515/FORUM.2010.022 DOI: https://doi.org/10.1515/forum.2010.022

J. M. G. Fell, Weak containment and induced representations of groups (II), Trans. Amer. Math. Soc. 110, 424 – 447 (1964), https://doi.org/10.2307/1993690 DOI: https://doi.org/10.2307/1993690

B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Super., (4), 6, 413 – 455 (1973). DOI: https://doi.org/10.24033/asens.1254

H. Leptin and J. Ludwig, Unitary representation theory of exponential Lie groups, de Gruyter, Berlin (1994), http://www.numdam.org/item?id=ASENS_1973_4_6_4_413_0

R. L. Lipsman, Orbit theory and harmonic analysis on Lie groups with co-compact nilradical, J. Math. Pures et Appl., 59, no. 3, 337 – 374 (1980).

A. Rahali, Dual topology of generalized motion groups, Math. Rep., 20(70), no. 3, 233 – 243 (2018).

A. Messaoud, A. Rahali, On the continuity of the Lipsman mapping of semidirect products, Rev. Roum. Math. Pures et Appl., 3(63), 249 – 258 (2018)

Downloads

Published

15.07.2020

Issue

Section

Research articles

How to Cite

Messaoud, A., and A. Rahali. “Another Proof for the Continuity of the Lipsman Mapping”. Ukrains’kyi Matematychnyi Zhurnal, vol. 72, no. 7, July 2020, pp. 945-51, https://doi.org/10.37863/umzh.v72i7.548.