Estimation of the solutions of the Sturm-Liouville equation
Abstract
Exact estimates are presented for the solutions of the problem $\ddot y + \lambda ^2 p(t)y = 0, y(0) = 0, \dot y(0) = 1$ with $p(t)$ satisfying one of the following conditions: $$(i) |p(t)| \leqslant M< \infty ; (ii) 0< \omega _1 \leqslant p(t) \leqslant \omega _2< \infty ; (iii) \mathop {sup}\limits_x \int_x^{x + T} {p(t)dt = P_T /T.}$$ The extremal solutions are found.
Published
25.03.1994
How to Cite
LevinB. Y., and MirochnikL. Y. “Estimation of the Solutions of the Sturm-Liouville Equation”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 46, no. 3, Mar. 1994, pp. 244–278, https://umj.imath.kiev.ua/index.php/umj/article/view/5760.
Issue
Section
Research articles