On equicontinuous factors of linear extensions of minimal dynamical systems
Abstract
The concept of the equicontinuous factor of the linear extension of a minimal transformation group is introduced and investigated. It is shown that a subset of motions, bounded and distal with respect to the extension, forms a maximal equicontinuous subsplitting of the linear extension. As a consequence, any distal linear extension has a nontrivial equicontinuous invariant subsplitting. The linear extensions without exponential dichotomy possess similar subsplittings if the Favard condition is satisfied. The same statement holds for linear extensions with the property of recurrent motions additivity provided that at least one nonzero motion of this sort exists.
Published
25.02.1993
How to Cite
GlavanV. A. “On Equicontinuous Factors of Linear Extensions of Minimal Dynamical Systems”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 45, no. 2, Feb. 1993, pp. 233–238, https://umj.imath.kiev.ua/index.php/umj/article/view/5803.
Issue
Section
Research articles