On a class of dual Rickart modules

  • R. Tribak Centre Regional des M ´ etiers de l’Education et de la Formation, Tanger, Morocco

Abstract

UDC 512.5

Let $R$ be a ring and let $\Omega_R$ be the set of maximal right ideals of $R$. An $R$-module $M$ is called an sd-Rickart module if for every nonzero endomorphism $ f$ of $M$, $\Im f$ is a fully invariant direct summand of $M$. We obtain a characterization for an arbitrary direct sum of sd-Rickart modules to be sd-Rickart. We also obtain a decomposition of an sd-Rickart $R$-module $M$, provided $R$ is a commutative noetherian ring and $Ass(M) \cap \Omega_R$ is a finite set. In addition, we introduce and study a
generalization of sd-Rickart modules.

References

F. W. Anderson, K. R. Fuller, Rings and categories of modules, Grad. Texts Math., 13, Springer-Verlag, New York-Heidelberg, ${ viii}$+339 pp. (1974).

G. F. Birkenmeier, B. J. Müller, S. T. Rizvi, ¨ Modules in which every fully invariant submodule is essential in a direct summand, Commun. Algebra, 30, № 3, 1395 – 1415 (2002) , https://doi.org/10.1081/AGB-120004878 DOI: https://doi.org/10.1081/AGB-120004878

G. Călugăreanu, P. Schultz, Modules with abelian endomorphism rings, Bull. Aust. Math. Soc., 82, 99 – 112 (2010), https://doi.org/10.1017/S0004972710000213 DOI: https://doi.org/10.1017/S0004972710000213

J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules. Supplements and projectivity in module theory, Frontiersin mathematics, Birkhauser, Basel etc. xiv+394 pp. ISBN: 978-3-7643-7572-0; 3-7643-7572-8(2006),

A. I. Generalov, The $omega $-cohigh purity in a category of modules, Math. Notes, 33, no. 5, 402 – 408 (1983)

K. R. Goodearl, Ring theory: nonsingular rings and modules, Pure and Applied Mathematics, No. 33. Marcel Dekker, Inc., New York-Basel, viii + 206 pp. (1976)

K. R. Goodearl, Von Neumann regular rings, Fearon Pitman Publ. Inc., London etc. xvii +369 pp. ISBN: 0-273-08400-3(1979)

D. Keskin Tütüncü, R. Tribak, ¨ On dual Baer modules, Glasgow Math. J., 52, 261 – 269 (2010), https://doi.org/10.1017/S0017089509990334 DOI: https://doi.org/10.1017/S0017089509990334

G. Lee, S. T. Rizvi, C. S. Roman, Dual Rickart modules, Commun. Algebra, 39, № 11, 4036 – 4058 (2011), https://doi.org/10.1080/00927872.2010.515639 DOI: https://doi.org/10.1080/00927872.2010.515639

W. K. Nicholson, M. F. Yousif, Quasi-Frobenius rings, Tracts in Mathematics, 158. Cambridge University Press, Cambridge, xviii+307 pp. ISBN: 0-521-81593-2 (2003).

A. Ç. Özcan, A. Harmanci, P. F. Smith, ¨ Duo modules, Glasgow Math. J., 48, № 3, 533 – 545 (2006), https://doi.org/10.1017/S0017089506003260 DOI: https://doi.org/10.1017/S0017089506003260

D. W. Sharpe, P. Vamos, Injective Modules, Cambridge Tracts in Mathematics and Mathematical Physics, No. 62. Cambridge University Press, London-New York, xii+190 pp. (1972).

Ph. Schultz, On a paper of Szele and Szendrei on groups with commutative endomorphism rings, Acta Math. Acad. Sci. Hung., 24, № 1, 2, 59 – 63 (1973), https://doi.org/10.1007/BF01894610 DOI: https://doi.org/10.1007/BF01894610

T. Szele, J. Szendrei, On abelian groups with commutative endomorphism ring, Acta Math. Acad. Sci. Hung., 2, 309 – 324 (1951), https://doi.org/10.1007/BF02020735 DOI: https://doi.org/10.1007/BF02020735

A. Tuganbaev, Rings close to regular, Math. and Appl., 545. Kluwer Academic Publishers, Dordrecht, xii+350 pp. ISBN: 1-4020-0851-1 (2002), https://doi.org/10.1007/978-94-015-9878-1 DOI: https://doi.org/10.1007/978-94-015-9878-1

Published
15.07.2020
How to Cite
Tribak, R. “On a Class of Dual Rickart Modules”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 7, July 2020, pp. 960-7, doi:10.37863/umzh.v72i7.6021.
Section
Research articles