Partial orders based on the CS decomposition

  • S. Z. Xu Huaiyin Ist. Technology, China)
  • J. L. Chen School Math., Southeast Univ., Nanjing, China
  • J. Benítez  Univ. Politecnica de Val ` encia, Inst. Mat. Multidisciplinar, Valencia, Spain

Abstract

UDC 512.5


A new decomposition for square matrices is given by using two known matrix decompositions, a new characterization of the core-EP order is obtained by using this new matrix decomposition. Also, we will use a matrix decomposition to investigate the minus, star, sharp and core partial orders in the setting of complex matrices.



Author Biography

J. Benítez,  Univ. Politecnica de Val ` encia, Inst. Mat. Multidisciplinar, Valencia, Spain




References

J. Ben´ıtez, A new decomposition for square matrices, Electron. J. Linear Algebra, 20, 207 – 225 (2010), https://doi.org/10.13001/1081-3810.1369 DOI: https://doi.org/10.13001/1081-3810.1369

J. Ben´ıtez, X. J. Liu, A short proof of a matrix decomposition with applications, Linear Algebra and Appl., 438, 1398 – 1414 (2013), https://doi.org/10.1016/j.laa.2012.10.002 DOI: https://doi.org/10.1016/j.laa.2012.10.002

J. K.Baksalary, S. K.Mitra, Left-star and right-star partial orderings, Linear Algebra and Appl., 149, 73 – 89 (1991), https://doi.org/10.1016/0024-3795(91)90326-R DOI: https://doi.org/10.1016/0024-3795(91)90326-R

O. M. Baksalary, G. Trenkler, Core inverse of matrices, Linear and Multilinear Algebra, 58, № 6, 681 – 697 (2010), https://doi.org/10.1080/03081080902778222 DOI: https://doi.org/10.1080/03081080902778222

R. E. Cline, R. E. Funderlic, The rank of a difference of matrices and associated generalized inverses, Linear Algebra and Appl., 24, 185 – 215 (1979), https://doi.org/10.1016/0024-3795(79)90158-7 DOI: https://doi.org/10.1016/0024-3795(79)90158-7

H. B. Chen, Y. J. Wang, A Family of higher-order convergent iterative methods for computing the Moore-Penrose inverse, Appl. Math. and Comput., 218, 4012 – 4016 (2011), https://doi.org/10.1016/j.amc.2011.05.066 DOI: https://doi.org/10.1016/j.amc.2011.05.066

M. P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc., 84, № 1, 139 – 141 (1978), https://doi.org/10.1090/S0002-9904-1978-14442-5 DOI: https://doi.org/10.1090/S0002-9904-1978-14442-5

R. E. Hartwig, How to order regular elements, Math. Jap., 25, 1 – 13 (1980).

R. E. Hartwig, K. Spindelb ock,Matrices for which $A^{ast}$ and $A^{dagger}$ commute, Linear and Multilinear Algebra, 14, 241 – 256 (1984), https://doi.org/10.1080/03081088308817561 DOI: https://doi.org/10.1080/03081088308817561

R. E. Hartwig, J. Shoaf, Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices, J. Austral. Math. Soc., 24, 10 – 34 (1977), https://doi.org/10.1017/s1446788700020036 DOI: https://doi.org/10.1017/S1446788700020036

L. Lebtahi, P. Patr´ıcio, N. Thome, The diamond partial order in rings, Linear and Multilinear Algebra, 62, № 3, 386 – 395 (2013), https://doi.org/10.1080/03081087.2013.779272 DOI: https://doi.org/10.1080/03081087.2013.779272

S. K. Mitra, On group inverses and the sharp order, Linear Algebra and Appl., 92, 17 – 37 (1987), https://doi.org/10.1016/0024-3795(87)90248-5 DOI: https://doi.org/10.1016/0024-3795(87)90248-5

S. B. Malik, Some more properties of core partial orde, Appl. Math. and Comput., 221, 192 – 201 (2013), https://doi.org/10.1016/j.amc.2013.06.012 DOI: https://doi.org/10.1016/j.amc.2013.06.012

K. Manjunatha Prasad, K. S. Mohana, Core-EP inverse, Linear and Multilinear Algebra, 62, № 6, 792 – 802 (2014), https://doi.org/10.1080/03081087.2013.791690 DOI: https://doi.org/10.1080/03081087.2013.791690

G. Marsaglia, G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra, 2, 269 – 292 (1974), https://doi.org/10.1080/03081087408817070 DOI: https://doi.org/10.1080/03081087408817070

D. S. Rakic, D. S. Djordjevi ´ c,´ Star, sharp, core and dual core partial order in rings with involution, Appl. Math. and Comput., 259, 800 – 818 (2015), https://doi.org/10.1016/j.amc.2015.02.062 DOI: https://doi.org/10.1016/j.amc.2015.02.062

H. X. Wang, Core-EP decomposition and its applications, Linear Algebra and Appl., 508, 289 – 300 (2016), https://doi.org/10.1016/j.laa.2016.08.008 DOI: https://doi.org/10.1016/j.laa.2016.08.008

H. K. Wimmer, Canonical angles of unitary spaces and perturbations of direct complements, Linear Algebra and Appl., 287, 373 – 379 (1999), https://doi.org/10.1016/S0024-3795(98)10017-4 DOI: https://doi.org/10.1016/S0024-3795(98)10017-4

S. Z. Xu, J. L. Chen, X. X. Zhang, New characterizations for core inverses in rings with involution, Front. Math. China., 12, № 1, 231 – 246 (2017), https://doi.org/10.1007/s11464-016-0591-2 DOI: https://doi.org/10.1007/s11464-016-0591-2

X. X. Zhang, S. Z. Xu, J. L. Chen, Core partial order in rings with involution, Filomat, 31, № 18, 5695 – 5701 (2017), https://doi.org/10.2298/fil1718695z DOI: https://doi.org/10.2298/FIL1718695Z

Published
18.08.2020
How to Cite
Xu, S. Z., J. L. Chen, and J. Benítez. “Partial Orders Based on the CS Decomposition”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 8, Aug. 2020, pp. 1119-33, doi:10.37863/umzh.v72i8.6025.
Section
Research articles