Vanishing and Artinianness of graded generalized local cohomology
Abstract
UDC 512.5
Let $R=\oplus_{j\geq 0}R_j$ be a homogeneous Noetherian ring with semilocal base ring $R_0.$
Let $R_+=\oplus_{j\geq 1}R_j$ be the irrelevant ideal of $R.$
For two finitely generated graded $R$-modules $M$ and $N,$ several results on the vanishing, Artiniannes and tameness property of the graded $R$-modules $H^i_{R_+}(M, N)$ will be investigated.
References
M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J., 21, № 2, 173 – 181 (1980), DOI: 10.1017/S0017089500004158
M. Brodmann, M. Hellus, Cohomological patterns of coherent sheaves over projective schemes, J. Pure and Appl. Algebra, 172, № 2-3, 165 – 182 (2002), DOI: 10.1016/S0022-4049(01)00144-X
M. Brodmann, R. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Univ. Press, Cambridge (1998), DOI: 10.1017/CBO9780511629204
N. T. Cuong, N. V. Hoang, Some finite properties of generalized local cohomology modules, East-West J. Math., 7, № 2, 107 – 115 (2005).
K. Divani-Aazar, A. Hajikarimi, Generalized local cohomology modules and homological Gorenstein dimension, Commun. Algebra, 39, № 6, 2051 – 2067 (2011), DOI: 10.1080/00927870903295380
J. Herzog, Komplexe, Auflosungen und Dualitat in der lokalen Algebra Habilitationsschrift, Univ. Regensburg (1970)
D. Kirby, Artinian modules and Hilbert polynomials, Quart. J. Math., D. Kirby, Artinian modules and Hilbert polynomials, Quart. J. Math., Oxford Ser., 24, № 2, 47 – 57 (1973).
A. Mafi, Matlis reflexive and generalized local cohomology modules, Czech. Math. J., 59 (134), № 4, 1095 – 1102 (2009), DOI: 10.1007/s10587-009-0077-4
H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge Univ. Press, (1986)
L. Melkerson, On asymptotic stability for sets of prime ideals connected with the powers of an ideal, Math. Proc. Cambridge Philos. Soc., 107, № 2, 267 – 271 (1990), DOI: 10.1017/S0305004100068535
N. Suzuki, On the generalized local cohomology and its duality, J. Math. Kyoto Univ., 18, № 1, 71 – 85 (1978), DOI: 10.1215/kjm/1250522630
N. Zamani, On the homogeneous pieces of graded generalized local cohomology modules, Colloq. Math., 97, № 2, 181 – 188 (2003), DOI: 10.4064/cm97-2-5
N. Zamani, On graded generalized local cohomology, Arch. Math., 86, № 4, 321 – 330 (2006), DOI: 10.1007/s00013-005-1524-6
N. Zamani, A. Khojali, Artinian graded generalized local cohomology, J. Alg. Appl., 14 (7) (2015), 124 – 133, DOI: 10.1142/S021949881550111X
This work is licensed under a Creative Commons Attribution 4.0 International License.