Some refinements of numerical radius inequalities

  • Z. Heydarbeygi Mashhad Branch, Islamic Azad Univ., Iran
  • M. Amyari Mashhad Branch, Islamic Azad Univ., Iran
  • M. Khanehgir Mashhad Branch, Islamic Azad Univ., Iran

Abstract

UDC 517.5

In this paper, we give some refinements for the second inequality in $\dfrac{1}{2}\|A\| \leq w(A) \leq \|A\|,$  where $A\in B(H).$  In particular, if $A$ is hyponormal by refining the Young inequality with the Kantorovich constant $K(\cdot, \cdot),$  we show that $w(A)\leq \dfrac{1}{\displaystyle {2\inf\nolimits_{\| x \|=1}}\zeta(x)}\| |A|+|A^{*}|\|\leq \dfrac{1}{2}\| |A|+|A^*|\|,$  where $\zeta(x)=K\left(\dfrac{\langle |A|x,x \rangle}{\langle |A^{*}|x,x \rangle},2\right)^{r},$ $r=\min\{\lambda,1-\lambda\}$ and $0\leq \lambda \leq 1$ . We also give a reverse for the classical numerical radius power inequality $w(A^{n})\leq w^{n}(A)$ for any operator $A \in B(H)$ in the case when $n=2.$ 

References

M. Boumazgour, A. H. Nabwey, A note concerning the numerical range of a basic elementary operator, Ann. Funct. Anal., 7, № 3, 434 – 441 (2016), https://doi.org/10.1215/20088752-3605510 DOI: https://doi.org/10.1215/20088752-3605510

S. S. Dragomir, A note on numerical radius and the Krein – Lin inequality, RGMIA Res. Rep. Collect., 18, Article 113 (2015).

S. S. Dragomir, A note on new refinements and reverses of Young’s inequality, Transylv. J. Math. and Mech., 8, № 1, 45 – 49 (2016).

S. S. Dragomir, Some Gru"ss type inequalities in inner product spaces, J. Inequal. Pure and Appl. Math., 4, № 2, Article 42 (2003), 10 p.

S. S. Dragomir, Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math., 39, № 1, 1 – 7 (2008).

R. Golla, On the numerical radius of a quaternionic normal operator, Adv. Oper. Theory, 2, № 1, 78 – 86 (2017), https://doi.org/10.22034/aot.1611-1060

M. Fuji, H. Zuo, G. Shi, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5, № 4, 551 – 556 (2011), https://doi.org/10.7153/jmi-05-47 DOI: https://doi.org/10.7153/jmi-05-47

F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. and Appl., 361, № 1, 262 – 269 (2010), https://doi.org/10.1016/j.jmaa.2009.08.059 DOI: https://doi.org/10.1016/j.jmaa.2009.08.059

F. Kittaneh, Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear and Multilinear Algebra, 59, no. 9, 1031 – 1037 (2011), https://doi.org/10.1080/03081087.2010.551661 DOI: https://doi.org/10.1080/03081087.2010.551661

F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Stud. Math., 158, № 1, 11 – 17 (2003), https://doi.org/10.4064/sm158-1-2 DOI: https://doi.org/10.4064/sm158-1-2

M. G. Krein, The angular localization of the spectrum of a multiplicative integral in Hilbert space (in Russian), Funkcional. Anal. i Prilozhen., 3, no. 1, 89 – 90 (1969).

M. Satari, M. S. Moslehian, T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space operators, Linear Algebra and Appl., 470, 216 – 227 (2015). DOI: https://doi.org/10.1016/j.laa.2014.08.003

A. Sheikhhosseini, M. S. Moslehian, K. Shebrawi, Inequalities for generalized Euclidean operator radius via Young’s inequality, J. Math. Anal. and Appl., 445, № 2, 1516 – 1529 (2017).

A. Zamani, Some lower bounds for the numerical radius of Hilbert space operators, Adv. Oper. Theory, 2, № 2, 98 – 107 (2017).

Published
25.10.2020
How to Cite
Heydarbeygi, Z., M. Amyari, and M. Khanehgir. “Some Refinements of Numerical Radius Inequalities”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 10, Oct. 2020, pp. 1443 -51, doi:10.37863/umzh.v72i10.6027.
Section
Research articles