A short note on the noncoprime regular module problem

Authors

  • G. Ercan Middle East Techn. Univ., Ankara, Turkey
  • Ş. Güloğlu Doğu¸s Univ., Istanbul, Turkey

DOI:

https://doi.org/10.37863/umzh.v72i11.6028

Keywords:

nilpotent group, regular orbit, regular module

Abstract

UDC 512.5

Considering a special configuration in which a finite group A acts by automorphisms on а finite group G and the semidirect product GA acts on the vector space V by linear transformations, we discuss the existence of a regular A-module in VA.



References

T. R. Berger, Hall-Higman type theorems , VI, J. Algebra, 51, no. 2, 416 – 424 (1978)., https://doi.org/10.1016/0021-8693(78)90115-1 DOI: https://doi.org/10.1016/0021-8693(78)90115-1

W. Carlip, Regular orbits of nilpotent subgroups of solvable groups , Illinois J. Math., 38, № 2, 199 – 222 (1994).

E. C. Dade, Oral communication to B Huppert , Endliche Gruppen, I, Berlin (1967).

A. Espuelas, The existence of regular orbit , J. Algebra, 127, no. 2, 259 – 268 (1989), https://doi.org/10.1016/0021-8693(89)90251-2 DOI: https://doi.org/10.1016/0021-8693(89)90251-2

A. Espuelas, Regular orbits on symplectic modules , J. Algebra, 138, № 1, 1 – 12 (1991), https://doi.org/10.1016/0021-8693(91)90188-E DOI: https://doi.org/10.1016/0021-8693(91)90188-E

P. Fleischmann, Finite groups with regular orbits on vector spaces , J. Algebra, 103, № 1, 211 – 215 (1986), https://doi.org/10.1016/0021-8693(86)90180-8 DOI: https://doi.org/10.1016/0021-8693(86)90180-8

R. Gow, On the number of characters in a p-block of a p-solvable group , J. Algebra, 65, no. 2, 421 – 426 (1980), https://doi.org/10.1016/0021-8693(80)90230-6 DOI: https://doi.org/10.1016/0021-8693(80)90230-6

B. Hargraves, The existence of regular orbits for nilpotent groups , J. Algebra, 72, no. 1, 54 – 100 (1981), https://doi.org/10.1016/0021-8693(81)90312-4 DOI: https://doi.org/10.1016/0021-8693(81)90312-4

B. Huppert, N. Blackburn, Finite Groups , II, Grundlehren Math. Wiss., Springer-Verlag, Berlin, New York, (1982). DOI: https://doi.org/10.1007/978-3-642-67994-0

I. M. Isaacs, Character theory of finite Groups , Dover Publ., Inc., New York, 1994.

A. Turull, Fixed point free action with regular orbits, J. reine und angew. Math., 371, 67 – 91 (1986), https://doi.org/10.1515/crll.1986.371.67 DOI: https://doi.org/10.1515/crll.1986.371.67

A. Turull, Supersolvable automorphism groups of solvable groups, Math. Z., 183, no. 1, 47 – 73 (1983), https://doi.org/10.1007/BF01187215 DOI: https://doi.org/10.1007/BF01187215

Y. Yang, Regular orbits of finite primitive solvable groups, J. Algebra, 323, no. 10, 2735 – 2755 (2010), https://doi.org/10.1016/j.jalgebra.2010.02.031 DOI: https://doi.org/10.1016/j.jalgebra.2010.02.031

Y. Yang, Regular orbits of nilpotent subgroups of solvable linear groups, J. Algebra, 325, 56 – 69 (2011), https://doi.org/10.1016/j.jalgebra.2010.09.024 DOI: https://doi.org/10.1016/j.jalgebra.2010.09.024

Downloads

Published

20.11.2020

Issue

Section

Short communications

How to Cite

Ercan, G., and Ş. Güloğlu. “A Short Note on the Noncoprime Regular Module Problem”. Ukrains’kyi Matematychnyi Zhurnal, vol. 72, no. 11, Nov. 2020, pp. 1589-92, https://doi.org/10.37863/umzh.v72i11.6028.