A remark on covering of compact Kähler manifolds and applications
Abstract
UDC 517.9
Recently, Kolodziej proved that, on a compact Kähler manifold $M,$ the solutions to the complex Monge – Ampére equation with the right-hand side in $L^p,$ $p>1,$ are Hölder continuous with the exponent depending on $M$ and $\|f\|_p$ (see [Math. Ann., 342, 379-386 (2008)]).
Then, by the regularization techniques in
[J. Algebraic Geom., 1, 361-409 (1992)], the authors in [J. Eur. Math. Soc., 16, 619-647 (2014)] have found the optimal exponent of the solutions.
In this paper, we construct a cover of the compact Kähler manifold $M$ which only depends on curvature of $M.$ Then, as an application, base on the arguments in
[Math. Ann., 342, 379-386 (2008)], we show that the solutions are Hölder continuous with the exponent just depending on the function $f$ in the right-hand side and upper bound of curvature of $M.$
References
E. Bedford, B. A. Taylor, The Dirichlet proplem for the complex Monge – Amp`ere operator, Invent. Math., 37, 1 – 44 (1976), https://doi.org/10.1007/BF01418826 DOI: https://doi.org/10.1007/BF01418826
E. Bedford, B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math., 149, 1 – 40 (1982), https://doi.org/10.1007/BF02392348 DOI: https://doi.org/10.1007/BF02392348
U. Cegrell, The general definition of the complex Monge – Amp`ere operator, Ann. Inst. Fourier, 54, 159 – 179 (2004). DOI: https://doi.org/10.5802/aif.2014
J.-P. Demailly, Complex analytic and differential geometry, http://www-fourier.ujf-grenoble.fr/demailly/books.html.
J. -P. Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom., 1, 361 – 409 (1992).
J. -P. Demailly, S. Dinew, V. Guedj, H. H. Pham, S. Kolodziej, A. Zeriahi, H¨older continuous solutions to Monge – Amp`ere equation, J. Eur. Math. Soc., 16, 619 – 647 (2014), https://doi.org/10.4171/JEMS/442 DOI: https://doi.org/10.4171/JEMS/442
T. C. Dinh, V. A. Nguyen, N. Sibony, Exponential estimates for plurisubharmonic functions and stochastic dynamics, J. Different. Geom., 84, 465 – 488 (2010). DOI: https://doi.org/10.4310/jdg/1279114298
V. Guedj, S. Kolodziej, A. Zeriahi, H¨older continuous solutions to the complex Monge – Amp`ere equations, Bull. London Math. Soc., 40, 1070 – 1080 (2008), https://doi.org/10.1112/blms/bdn092 DOI: https://doi.org/10.1112/blms/bdn092
S. Kołodziej, The Monge – Amp`ere equation, Acta Math., 180, № 1, 69 – 117 (1998), https://doi.org/10.1007/BF02392879 DOI: https://doi.org/10.1007/BF02392879
S. Kołodziej, The Monge – Amp`ere equation on compact K¨ahler manifolds, Indiana Univ. Math. J., 52, № 3, 667 – 686 (2003), https://doi.org/10.1512/iumj.2003.52.2220 DOI: https://doi.org/10.1512/iumj.2003.52.2220
S. Kołodziej, The complex Monge – Amp`ere equation and pluripotential theory, Mem. Amer. Math. Soc. 178, № 840, (2005), https://doi.org/10.1090/memo/0840 DOI: https://doi.org/10.1090/memo/0840
S. Kołodziej, H¨older continuity of solutions to the complex Monge – Amp`ere equation with the right-hand side in $L^p$ : the case of compact K¨ahler manifolds, Math. Ann., 342, № 2, 379 – 386 (2008), https://doi.org/10.1007/s00208-008-0239-y DOI: https://doi.org/10.1007/s00208-008-0239-y
L. M. Hai, P. H. Hiep, H. N. Quy, Local property of the class $E_{χ, loc}$ , J. Math. Anal. and Appl., 402, № 2, 440 – 445 (2013), https://doi.org/10.1016/j.jmaa.2013.01.048 DOI: https://doi.org/10.1016/j.jmaa.2013.01.048
P. H. Hiep, H¨older continuity of solutions to the complex Monge – Amp`ere operator on compact K¨ahler manifolds, Ann. Inst. Fourier, 60, № 5, 1857 – 1869 (2010).
H. Hein, Gravitational instantons from rational elliptic surfaces, J. Amer. Math. Soc., 25, № 2, 355 – 393 (2012), https://doi.org/10.1090/S0894-0347-2011-00723-6 DOI: https://doi.org/10.1090/S0894-0347-2011-00723-6
V. V. Hung, H. N. Quy, Convergence in capacity on smooth hypersurfaces of compact K¨ahler manifolds, Ann. Polon. Math., 103, № 2, 175 – 187 (2012), https://doi.org/10.4064/ap103-2-5 DOI: https://doi.org/10.4064/ap103-2-5
G. Tian, S. T. Yau, Existence of K¨ahler – Einstein metrics on complete K¨ahler manifolds and their applications to algebraic geometry, Mathematical Aspects of String Theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., vol. 1, 574 – 628 (1987). DOI: https://doi.org/10.1142/9789812798411_0028
G. Tian, S. T. Yau, Complete K¨ahler manifolds with zero Ricci curvature, I, J. Amer. Math. Soc., 3, № 3, 579 – 609 (1990), https://doi.org/10.2307/1990928 DOI: https://doi.org/10.2307/1990928
G. Tian, S. T. Yau, Complete K¨ahler manifolds with zero Ricci curvature, II, Invent. Math., 106, № 1, 27 – 60 (1991), https://doi.org/10.1007/BF01243902 DOI: https://doi.org/10.1007/BF01243902
S. T. Yau, On the Ricci curvature of a compact K¨ahler manifold and the complex Monge – Amp`ere equation, Commun. Pure and Appl. Math., 31, № 3, 339 – 411 (1978).
This work is licensed under a Creative Commons Attribution 4.0 International License.