First cohomology space of the orthosymplectic Lie superalgebra $\mathfrak{osp}(n|2)$ in the Lie superalgebra of superpseudodifferential operators
Abstract
UDC 515.12
We investigate the first cohomology space associated with the embedding of the Lie orthosymplectic superalgebra $\mathfrak{osp}(n|2)$ on the $(1,n)$-dimensional superspace $\mathbb{R}^{1|n}$ in the Lie superalgebra $ \mathcal{S}\Psi\mathcal{DO}(n)$ (for $n \geq 4$ ) of superpseudodifferential operators with smooth coefficients.
Following Ovsienko and Roger, we give explicit expressions of the basis cocycles.
This work is the simplest generalization of a result by Basdouri [First space cohomology of the orthosymplectic Lie superalgebra in the Lie superalgebra of superpseudodifferential operators, Algebras and Representation Theory, 16, 35-50 (2013)].
References
B. Agrebaoui, N. Ben Fraj, On the cohomology of Lie superalgebra of contact vector fields on $S^{1/1}$, Bull. Soc. Roy. Sci. Liege, 73 (2004).
B. Agrebaoui, N. Ben Fraj, S. Omri, On the cohomology of Lie superalgebra of contact vector fields on $S^{1|2}$, J. Nonlinear Math. Phys., 13, № 4, 523 – 534 (2006), https://doi.org/10.2991/jnmp.2006.13.4.7 DOI: https://doi.org/10.2991/jnmp.2006.13.4.7
B. Agrebaoui, I. Basdouri, N. Elghomdi, S. Hammami, First space cohomology of the orthosymplectic Lie
superalgebra $frak{osp}(3|2)$ in the Lie superalgebra of superpseudodifferential operators, J. Pseudo-Different. Oper. and Appl., 7, 141 – 155 (2016), https://doi.org/10.1007/s11868-015-0140-x DOI: https://doi.org/10.1007/s11868-015-0140-x
I. Basdouri, First space cohomology of the orthosymplectic Lie superalgebra in the Lie superalgebra of superpseudodifferential operators, Algebras and Representation Theory, 16, 35 – 50 (2013); https://doi.org/10.1007/s10468-011-9292-4. DOI: https://doi.org/10.1007/s10468-011-9292-4
M. Ben Ammar, N. Ben Fraj, S. Omri, The binary invariant differential operators on weighted densities on the superspace $Bbb R^{1|n}$ and cohomology, J. Math. Phys., 51, № 4 (2009); https://doi.org/1063/1.3355127. DOI: https://doi.org/10.1063/1.3355127
N. Ben Fraj, S. Omri, Deforming the Lie superalgebra of contact vector fields on $S^{1|1}$, J. Nonlinear Math. Phys., 13, № 1, 19 – 33 (2006), https://doi.org/10.2991/jnmp.2006.13.1.3 DOI: https://doi.org/10.2991/jnmp.2006.13.1.3
N. Ben Fraj, S. Omri, Deformating the Lie superalgebra of contact vector fields on $S^{1|2}$ inside the Lie superalgebra of pseudodifferential operators on $S^{1|2}$, Theore. and Math. Phys., 163, № 2, 618 – 633 (2010). DOI: https://doi.org/10.1007/s11232-010-0045-z
N. El Gomdi and R. Messaoud, Cohomology of orthosymplectic Lie superalgebra acting on $lambda$ -densities on $R^{1|n}$, Int. J. Geom. Methods Mod. Phys., 14, Issue 01 (2017), https://doi.org/10.1142/S0219887817500165 DOI: https://doi.org/10.1142/S0219887817500165
A. Fialowski, An example of formal deformations of Lie algebras, Proc. NATO, Conf. Deformations Theory of Algebras, Kluwer (1988), p. 3. DOI: https://doi.org/10.1007/978-94-009-3057-5_5
A. Fialowski, M. de Montigny, On deformations and contractions of Lie algebras, SIGMA, 2, Article 048 (2006), https://doi.org/10.3842/SIGMA.2006.048 DOI: https://doi.org/10.3842/SIGMA.2006.048
B. L. Feigin, D. B. Fuks, Homology of the Lie algebra of vector fields on the line, Funct. Anal. and Appl., 14, 201 – 212 (1980). DOI: https://doi.org/10.1007/BF01086182
D. B. Fuchs, Cohomology of infinite-dimensional Lie algebras, Plenum Publ., New York (1986).
E. Inonu, E. P. Wigner, On the contraction of groups and their representations, Proc. Nat. Acad. Sci. USA, 39, № 6, 510 – 524 (1953), https://doi.org/10.1073/pnas.39.6.510 DOI: https://doi.org/10.1073/pnas.39.6.510
V. Ovsienko, C. Roger, Deforming the Lie algebra of vector fields on $S^1$ inside the Lie algebra of pseudodifferential symbols on $S^1$, Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2, 211 – 226 (1999), https://doi.org/10.1090/trans2/194/09 DOI: https://doi.org/10.1090/trans2/194/09
V. Ovsienko, C. Roger, Deforming the Lie algebra of vector fields on $S^1$ inside the Poisson algebra on $dot T{}^ast S^1$, Comm. Math. Phys., 198, 97 – 110 (1998), https://doi.org/10.1007/s002200050473 DOI: https://doi.org/10.1007/s002200050473
I. E. Segal, A class of operator algebras which are determined by groups, Duke Math. J., 18, № 1, 221 – 265 (1951). DOI: https://doi.org/10.1215/S0012-7094-51-01817-0
E. J. Saletan, Contraction of Lie groups, J. Math. Phys., 2, 1 – 21 (1961), https://doi.org/10.1063/1.1724208 DOI: https://doi.org/10.1063/1.1724208
Copyright (c) 2022 Maha
This work is licensed under a Creative Commons Attribution 4.0 International License.