Generalized derivations acting on multilinear polynomials as a Jordan homomorphisms

Keywords: Jordan homomorphism, generalized derivations, multilinear polynomials, extended centroid, Utumi quotient ring.

Abstract

UDC 512.5

Let $R$ be a prime ring whose characteristic is not equal to $2,$ let  $U$ be the Utumi quotient ring of $R,$ and let $C$ be the extended centroid of $R.$  Also let $G$ and $H$ be two generalized derivations on $R$ and let $f(x_1,\ldots,x_n)$ be a noncentral multilinear polynomial over $C.$  If $G(H(u^2))=(H(u))^2$ for all $u=f(r_1,\ldots,r_n),$ $r_1,\ldots,r_n \in R,$ then one of the following holds:

1) $H=0;$

2) there exists $\lambda\in C$ such that $G(x)=H(x)=\lambda x$ for all $x\in R;$

3) there exist $\lambda\in C$ and $a\in U$ such that $H(x)=\lambda x$ and $G(x)=[a, x]+\lambda x$ for all $x\in R$ and $f(x_1,\ldots,x_n)^2$ is central-valued on $R.$

References

V. De Filippis, Generalized derivations as Jordan homomorphisms on lie ideals and right ideals, Acta Math. Sin. (Engl. Ser.), 25, № 12, 1965 – 1974 (2009), https://doi.org/10.1007/s10114-009-7343-0 DOI: https://doi.org/10.1007/s10114-009-7343-0

V. De Filippis, Generalized skew derivations as Jordan homomorphisms on multilinear polynomials, J. Korean Math. Soc., 52, № 1, 191 – 207 (2009), https://doi.org/10.4134/JKMS.2015.52.1.191 DOI: https://doi.org/10.4134/JKMS.2015.52.1.191

V. De Filippis, G. Scudo, Generalized derivations which extend the concept of Jordan homomorphism, Publ. Math. Debrecen, 86, № 1-2, 187 – 212 (2015), https://doi.org/10.5486/PMD.2015.7070 DOI: https://doi.org/10.5486/PMD.2015.7070

V. De Filippis, B. Dhara, Generalized skew-derivations and generalization of homomorphism maps in prime rings, Comm. Algebra, 47, № 8, 3154 – 3169 (2019), https://doi.org/10.1080/00927872.2018.1552285 DOI: https://doi.org/10.1080/00927872.2018.1552285

B. Dhara, Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime rings, Beitr. Algebra and Geom., 53, 203 – 209 (2012), https://doi.org/10.1007/s13366-011-0051-9 DOI: https://doi.org/10.1007/s13366-011-0051-9

B. Dhara, Generalized derivations acting on multilinear polynomials in prime rings, Czechoslovak Math. J., 68, № 1, 95 – 119 (2018), https://doi.org/10.1007/s13366-011-0051-9 DOI: https://doi.org/10.21136/CMJ.2017.0352-16

K. I. Beidar, W. S. Martindale III, V. Mikhalev, Rings with generalized identities, Marcel Dekker, New York (1996).

H. E. Bell, L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar., 53, 339 – 346 (1989). DOI: https://doi.org/10.1007/BF01953371

L. Carini, V. De Filippis, G. Scudo, Identities with product of generalized skew derivations on multilinear polynomials, Comm. Algebra, 44, № 7, 3122 – 3138 (2016), https://doi.org/10.1080/00927872.2015.1027354 DOI: https://doi.org/10.1080/00927872.2015.1027354

C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103, № 3, 723 – 728 (1988), https://doi.org/10.2307/2046841 DOI: https://doi.org/10.1090/S0002-9939-1988-0947646-4

T. S. Erickson, W. S. Martindale III, J. M. Osborn, Prime nonassociative algebras, Pacif. J. Math., 60, 49 – 63 (1975). DOI: https://doi.org/10.2140/pjm.1975.60.49

C. Faith, Y. Utumi, On a new proof of Litoff ’s theorem, Acta Math. Acad. Sci. Hung., 14, 369 – 371 (1963), https://doi.org/10.1007/BF01895723 DOI: https://doi.org/10.1007/BF01895723

I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc., 81, 331 – 341 (1956), https://doi.org/10.2307/1992920 DOI: https://doi.org/10.1090/S0002-9947-1956-0076751-6

N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., 37, Amer. Math. Soc., Providence, RI (1964).

V. K. Kharchenko, Differential identity of prime rings, Algebra and Logic, 17, 155 – 168 (1978). DOI: https://doi.org/10.1007/BF01670115

T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27, № 8, 4057 – 4073 (1999), https://doi.org/10.1080/00927879908826682 DOI: https://doi.org/10.1080/00927879908826682

T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sin., 20, № 1, 27 – 38 (1992).

U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc., 202, 97 – 103 (1975), https://doi.org/10.2307/1997300 DOI: https://doi.org/10.1090/S0002-9947-1975-0354764-6

W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12, 576 – 584 (1969), https://doi.org/10.1016/0021-8693(69)90029-5 DOI: https://doi.org/10.1016/0021-8693(69)90029-5

M. F. Smiley, Jordan homomorphisms onto prime rings, Trans. Amer. Math. Soc., 84, 426 – 429 (1957), https://doi.org/10.2307/1992823 DOI: https://doi.org/10.1090/S0002-9947-1957-0083484-X

E. Albas, N. Argac, Generalized derivations of prime rings, Algebra Colloq., 11, 399 – 410 (2004).

A. Ali, N. Rehman, S. Ali, On lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Math. Hungar., 101, 79 – 82 (2003), https://doi.org/10.1023/B:AMHU.0000003893.61349.98 DOI: https://doi.org/10.1023/B:AMHU.0000003893.61349.98

S. K. Tiwari, Generalized derivations with multilinear polynomials in prime rings, Comm. Algebra, 46, № 12, 5356 – 5372 (2018), https://doi.org/10.1080/00927872.2018.1468899 DOI: https://doi.org/10.1080/00927872.2018.1468899

S. K. Tiwari, R. K. Sharma, B. Dhara, Identities related to generalized derivation on ideal in prime rings, Beitr. Algebra and Geom., 57, № 4, 809 – 821 (2016), https://doi.org/10.1007/s13366-015-0262-6 DOI: https://doi.org/10.1007/s13366-015-0262-6

S. K. Tiwari, R. K. Sharma, B. Dhara, Multiplicative (generalized)-derivation in semiprime rings, Beitr. Algebra and Geom., 58, № 1, 211 – 225 (2017), https://doi.org/10.1007/s13366-015-0279-x DOI: https://doi.org/10.1007/s13366-015-0279-x

Published
09.08.2022
How to Cite
TiwariS. K., and PrajapatiB. “Generalized Derivations Acting on Multilinear Polynomials As a Jordan Homomorphisms”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 7, Aug. 2022, pp. 991 - 1003, doi:10.37863/umzh.v74i7.6108.
Section
Research articles