Generalizations of starlike harmonic functions defined by Sălăgean and Ruscheweyh derivatives

Keywords: harmonic functions, Salagean and Ruscheweyh derivative, negative coefficients

Abstract

UDC 517.5

We investigate some generalizations of the classes of harmonic functions defined by the Sălăgean and Ruscheweyh derivatives. By using the extreme-points theory, we obtain the coefficient-estimates distortion theorems and mean integral  inequalities for these classes of functions.

References

F. M. Al-Oboudi, On univalent functions defined by a generalized Su{a}lu{a}gean operator, Int. J. Math. and Math. Sci., 27, 1429 – 1436 (2004). DOI: https://doi.org/10.1155/S0161171204108090

J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Math., 9, 3 – 25 (1984). DOI: https://doi.org/10.5186/aasfm.1984.0905

J. Dziok, M. Darus, J. Sokol, T. Bulboacu a, Generalizations of starlike harmonic functions, C. R. Acad. Sci. Paris, Ser. I, 354, 13 – 18 (2016). DOI: https://doi.org/10.1016/j.crma.2015.08.001

J. Dziok, J. Jahangiri, H. Silverman, Harmonic functions with varying coefficients, J. Inequal. and Appl., 139, (2016); DOI: https://doi.org/10.1186/s13660-016-1079-z

DOI 10.1186/s13660-016-1079-z.

P. L. Duren, Harmonic mappings in the plane, Cambridge Tracts in Math., 156, (2004). DOI: https://doi.org/10.1017/CBO9780511546600

J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 52, №~2, 57 – 66 (1998).

J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. and Appl., 235, 470 – 477 (1999). DOI: https://doi.org/10.1006/jmaa.1999.6377

W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28, 297 – 326 (1973). DOI: https://doi.org/10.4064/ap-28-3-297-326

M. Krein, D. Milman, On the extreme points of regularly convex sets, Stud. Math., 9, 133 – 138 (1940). DOI: https://doi.org/10.4064/sm-9-1-133-138

P. Montel, Sur les families de functions analytiques qui admettent des valeurs exceptionelles dans un domaine, Ann. Sci. {'{E}}c. Norm. Super., 23, 487 – 535 (1912). DOI: https://doi.org/10.24033/asens.652

G. Murugusundaramoorthy, K. Vijaya, R. K. Raina, A subclass of harmonic functions with varying arguments defined by Dziok – Srivastava operator, Arch. Math., 45, №~1, 37 – 46 (2009).

St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49, 109 – 115 (1975). DOI: https://doi.org/10.1090/S0002-9939-1975-0367176-1

G. S. Su{a}lu{a}gean, Subclasses of univalent functions, Lect. Notes in Math., 1013, 362 – 372 (1983). DOI: https://doi.org/10.1007/BFb0066543

H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. and Appl., 220, 283 – 289 (1998). DOI: https://doi.org/10.1006/jmaa.1997.5882

Published
27.11.2022
How to Cite
Páll-Szabo Á. O. “Generalizations of Starlike Harmonic Functions Defined by Sălăgean and Ruscheweyh Derivatives”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 10, Nov. 2022, pp. 1388 -00, doi:10.37863/umzh.v74i10.6157.
Section
Research articles