On Fischer subgroups of finite groups

  • Yu. Mao Institute of Quantum Information Science, Shanxi Datong University
  • X. Ma Institute of Quantum Information Science, Shanxi Datong University
  • N. Т. Vorob'ev Department of Mathematics, Masherov Vitebsk State University
  • T. B. Karaulova Department of Mathematics, Masherov Vitebsk State University
Keywords: Fitting set, Fischer set, F-injector, Fischer F-subgroup of G.


UDC 512.542

Let $\mathscr{F}$ be a Fitting set of a group $G,$ $\pi$ be a nonempty set of primes, and $L\leq G.$
In this case, $\mathscr{F}$ is called a Fischer $\pi$-set of $G$
if conditions $L\in\mathscr{F},$ $K\unlhd L,$ and $H/K$ is a $p$-subgroup of $L/K$ for a prime $p\in \pi$ imply necessarily that $H \in \mathscr{F}.$
It is said that a subgroup $F$ of $G$ is a Fischer $\mathscr{F}$-subgroup of $G$
if the following conditions hold:
1) $F \in \mathscr{F};$
2) if $L$ is an $\mathscr{F}$-subgroup of $G$ normalized by $F,$ then $L\leq F.$
It is said that a Fitting set $\mathscr{F}$ of $G$ is $\pi$\emph{-saturated} if $\mathscr{F} = \{H \leq G : H/H_\mathscr{F} \in \mathfrak{E}_{\pi'} \},$ where $\mathfrak{E}_{\pi'}$ is the class of all $\pi'$-groups.

In this paper, under the condition that $\mathscr{F}$ is a $\pi$-saturated Fischer $\pi$-set of a $\pi$-soluble group $G,$
we prove that a subgroup $V$ of $G$ is an $\mathscr{F}$-injector of $G$ if and only if $V$ is a Fischer $\mathscr{F}$-subgroup of $G$ containing a Hall $\pi'$-subgroup of $G.$

Author Biography

X. Ma, Institute of Quantum Information Science, Shanxi Datong University





W. Anderson, Injectors in finite soluble groups, J. Algebra, 36, 333 – 338 (1975), https://doi.org/10.1016/0021-8693(75)90136-2 DOI: https://doi.org/10.1016/0021-8693(75)90136-2

S. A. Chunikhin, O $pi$ -otdelimy`kh gruppakh, Dokl. AN SSSR, 59, 443 – 445 (1948).

K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin; New York (1992), https://doi.org/10.1515/9783110870138 DOI: https://doi.org/10.1515/9783110870138

R. Dark, Some examples in the theory of injectors of finite soluble groups, Math. Z., 127, 145 – 156 (1972), https://doi.org/10.1007/BF01112606 DOI: https://doi.org/10.1007/BF01112606

B. Fischer, Klassen konjugierter Untergruppen in endlichen aufl¨osbaren Gruppen, Habilitationsschrift, Universit¨at Frankfurt (1966).

B. Fischer, W. Gasch¨utz, B. Hartley, Injektoren endlicher aufl¨osbarer Gruppen, Math. Z., 102, 337 – 339 (1967), https://doi.org/10.1007/BF01111070 DOI: https://doi.org/10.1007/BF01111070

W. Gasch¨utz, Zur Theorie der endlichen aufl¨osbaren Gruppen, Math. Z., 80, 300 – 305 (1963). DOI: https://doi.org/10.1007/BF01162386

B. Hartley, On Fischer’s dualization of formation theory, Proc. London Math. Soc., 3, №. 2, 193 – 207 (1969), https://doi.org/10.1112/plms/s3-19.2.193 DOI: https://doi.org/10.1112/plms/s3-19.2.193

T. B. Karaulova, Lokal`ny`e mnozhestva Fittinga i in`ektory` konechnoj gruppy`, Zhurn. Belorus. gos. un-ta. Matematika. Informatika, 3, 29 – 38 (2018).

M. G. Semenov, Formula in`ektora konechnoj $pi$ -razreshimoj gruppy`, Problemy` fiziki, matematiki i tekhniki, 21, № 4, 77 – 88 (2014).

N. Yang, W. Guo, N. T. Vorob’ev, On $Cal{F}$-injectors of Fitting set of a finite group, Commun. Algebra, 46, № 1, 217 – 229 (2018), https://doi.org/10.1080/00927872.2017.1319475 DOI: https://doi.org/10.1080/00927872.2017.1319475

How to Cite
Mao , Y., X. Ma, Vorob’evN. Т., and T. B. Karaulova. “On Fischer Subgroups of Finite Groups”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 7, July 2021, pp. 913 -19, doi:10.37863/umzh.v73i7.6192.
Research articles