On Fischer subgroups of finite groups

  • Yu. Mao Institute of Quantum Information Science, Shanxi Datong University
  • X. Ma Institute of Quantum Information Science, Shanxi Datong University
  • N. Т. Vorob'ev Department of Mathematics, Masherov Vitebsk State University
  • T. B. Karaulova Department of Mathematics, Masherov Vitebsk State University
Keywords: Fitting set, Fischer set, F-injector, Fischer F-subgroup of G.

Abstract

UDC 512.542

Let $\mathscr{F}$ be a Fitting set of a group $G,$ $\pi$ be a nonempty set of primes, and $L\leq G.$
In this case, $\mathscr{F}$ is called a Fischer $\pi$-set of $G$
if conditions $L\in\mathscr{F},$ $K\unlhd L,$ and $H/K$ is a $p$-subgroup of $L/K$ for a prime $p\in \pi$ imply necessarily that $H \in \mathscr{F}.$
It is said that a subgroup $F$ of $G$ is a Fischer $\mathscr{F}$-subgroup of $G$
if the following conditions hold:
1) $F \in \mathscr{F};$
2) if $L$ is an $\mathscr{F}$-subgroup of $G$ normalized by $F,$ then $L\leq F.$
It is said that a Fitting set $\mathscr{F}$ of $G$ is $\pi$\emph{-saturated} if $\mathscr{F} = \{H \leq G : H/H_\mathscr{F} \in \mathfrak{E}_{\pi'} \},$ where $\mathfrak{E}_{\pi'}$ is the class of all $\pi'$-groups.

In this paper, under the condition that $\mathscr{F}$ is a $\pi$-saturated Fischer $\pi$-set of a $\pi$-soluble group $G,$
we prove that a subgroup $V$ of $G$ is an $\mathscr{F}$-injector of $G$ if and only if $V$ is a Fischer $\mathscr{F}$-subgroup of $G$ containing a Hall $\pi'$-subgroup of $G.$

Author Biography

X. Ma, Institute of Quantum Information Science, Shanxi Datong University

 

 

 

References

W. Anderson, Injectors in finite soluble groups, J. Algebra, 36, 333 – 338 (1975), https://doi.org/10.1016/0021-8693(75)90136-2 DOI: https://doi.org/10.1016/0021-8693(75)90136-2

S. A. Chunikhin, O $pi$ -otdelimy`kh gruppakh, Dokl. AN SSSR, 59, 443 – 445 (1948).

K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin; New York (1992), https://doi.org/10.1515/9783110870138 DOI: https://doi.org/10.1515/9783110870138

R. Dark, Some examples in the theory of injectors of finite soluble groups, Math. Z., 127, 145 – 156 (1972), https://doi.org/10.1007/BF01112606 DOI: https://doi.org/10.1007/BF01112606

B. Fischer, Klassen konjugierter Untergruppen in endlichen aufl¨osbaren Gruppen, Habilitationsschrift, Universit¨at Frankfurt (1966).

B. Fischer, W. Gasch¨utz, B. Hartley, Injektoren endlicher aufl¨osbarer Gruppen, Math. Z., 102, 337 – 339 (1967), https://doi.org/10.1007/BF01111070 DOI: https://doi.org/10.1007/BF01111070

W. Gasch¨utz, Zur Theorie der endlichen aufl¨osbaren Gruppen, Math. Z., 80, 300 – 305 (1963). DOI: https://doi.org/10.1007/BF01162386

B. Hartley, On Fischer’s dualization of formation theory, Proc. London Math. Soc., 3, №. 2, 193 – 207 (1969), https://doi.org/10.1112/plms/s3-19.2.193 DOI: https://doi.org/10.1112/plms/s3-19.2.193

T. B. Karaulova, Lokal`ny`e mnozhestva Fittinga i in`ektory` konechnoj gruppy`, Zhurn. Belorus. gos. un-ta. Matematika. Informatika, 3, 29 – 38 (2018).

M. G. Semenov, Formula in`ektora konechnoj $pi$ -razreshimoj gruppy`, Problemy` fiziki, matematiki i tekhniki, 21, № 4, 77 – 88 (2014).

N. Yang, W. Guo, N. T. Vorob’ev, On $Cal{F}$-injectors of Fitting set of a finite group, Commun. Algebra, 46, № 1, 217 – 229 (2018), https://doi.org/10.1080/00927872.2017.1319475 DOI: https://doi.org/10.1080/00927872.2017.1319475

Published
20.07.2021
How to Cite
Mao Y., Ma X., Vorob’evN. Т., and Karaulova T. B. “On Fischer Subgroups of Finite Groups”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 7, July 2021, pp. 913 -19, doi:10.37863/umzh.v73i7.6192.
Section
Research articles