Some simplest integral equalities equivalent to the Riemann hypothesis

  • S. K. Sekatskii Laboratory of Biological Electron Microscopy, IPHYS, Ecole Polytechnique Fe ́de ́rale de Lausanne, Switzerland
  • S. Beltraminelli CERFIM, Research Center for Math. and Phys., Locarno, Switzerland)
Keywords: Riemann hypothesis, Integral equality

Abstract

UDC 511.3

We show that the following integral equalities are equivalent to the Riemann hypothesis for any real $a>0$ and any real $0<\epsilon<1,$ $\epsilon \neq 1$:\begin{gather*}\int\limits_{-\infty}^{\infty}\frac{\ln\left(\zeta\left(\dfrac{1}{2}+it\right)\right)}{a+it}\,dt=-2\pi\ln\frac{a+\dfrac{1}{2}}{a}, \\ \int\limits_{-\infty}^{\infty}\frac{\ln\left(\zeta\left(\dfrac{1}{2}+it\right)\right)}{(a+it)^\epsilon}\,dt=-\frac{2\pi}{1-\epsilon}\left(\left(a+\frac{1}{2}\right)^{1-\epsilon}-a^{1-\epsilon}\right).\end{gather*}

References

S. K. Sekatskii, S. Beltraminelli, D. Merlini, On equalities involving integrals of the logarithm of the Riemann $zeta$-function and equivalent to the Riemann hypothesis, Ukr. Math. J., 64, № 2, 218 – 228 (2012). DOI: https://doi.org/10.1007/s11253-012-0642-0

S. K. Sekatskii, S. Beltraminelli, D. Merlini, On equalities involving integrals of the logarithm of the Riemann $zeta$-function with exponential weight which are equivalent to the Riemann hypothesis, Int. J. Anal., 2015, Article~980728 (2015). DOI: https://doi.org/10.1155/2015/980728

S. K. Sekatskii, S. Beltraminelli, D. Merlini, A few equalities involving integrals of the logarithm of the Riemann $zeta $-function and equivalent to the Riemann hypothesis I, II, III}; arXiv: 0806.1596v1, 0904.1277v1, 1006.0323v1.

E. C. Titchmarsh, E. R. Heath-Brown, The theory of the Riemann Zeta-function, Clarendon Press, Oxford (1988).

M. Balazard, E. Saias, M. Yor, Notes sur la fonction de Riemann, Adv. Math., 143, 284 – 287 (1999). DOI: https://doi.org/10.1006/aima.1998.1797

V. V. Volchkov, On an equality equivalent to the Riemann hypothesis, Ukr. Math. J., 47, № 4, 491 – 493 (1995). DOI: https://doi.org/10.1007/BF01056314

R. J. Backlund, "{U}ber die Nullstellen der Riemannschen Zetafunktion, Acta Math., 41, 345 – 375 (1918). DOI: https://doi.org/10.1007/BF02422950

I. S. Gradshtein, I. M. Ryzhik, Tables of integrals, series and products, Acad. Press, New York (1990).

Published
08.11.2022
How to Cite
Sekatskii, S. K., and S. Beltraminelli. “Some Simplest Integral Equalities Equivalent to the Riemann Hypothesis”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 9, Nov. 2022, pp. 1256 -3, doi:10.37863/umzh.v74i9.6222.
Section
Research articles